Новости в попытке классификации молний араго

Однако, в попытке классификации молний Араго вовсе не был первым. ___.

Владимир Карцев - Приключение великих уравнений

Из числа опрошенных только 409 человек наблюдали линейную молнию в непосредственной близости, при этом всего 200 анкетируемых встречались с шаровой молнией. Ученым повезло: среди участников эксперимента нашелся даже один «счастливчик», который наблюдал «огненный шар» аж восемь раз. Его свидетельства пополнили копилку косвенных доказательств того, что шаровая молния — не такое уж редкое явление. Кластерная теория Огромный вклад в изучение вопроса внес профессор Игорь Павлович Стаханов. В основе его книги «О физической природе шаровой молнии» лежат многочисленные свидетельства очевидцев, которые ученый подверг физическому анализу. Это позволило ему не только описать основные характеристики и параметры шаровых молний, условия их появления, передвижения и принципы взаимодействия с окружающим миром, но и дало возможность сформулировать кластерную гипотезу. По мнению Стаханова, шаровая молния — не что иное, как сосредоточение сгустка ионов, которые «облеплены» оболочками из полярных молекул, например, воды.

Кластерная теория Стаханова легко согласуется с многочисленными историями очевидцев и объясняет как строение молнии в виде шара наличие эффективного поверхностного натяжения , так и способности молнии проникать через отверстия, заново принимая исходную форму. Однако практические опыты Стаханова по созданию сгустка кластерных ионов оказались неудачными. Альтернативный источник энергии За всю историю изучения вопроса было высказано немало гипотез, общая идея которых сводится к одному: шаровая молния сама является источником энергии. По его мнению, шаровая молния рождается при аннигиляции частичек антивещества, которые из космоса попадают в плотные атмосферные слои, а затем, увлекаемые линейным разрядом, оказываются на земле. Данную гипотезу доказать пока невозможно по причине того, что в космосе не удается обнаружить подходящее антивещество. Сегодня ученые не отвергают возможности научиться создавать искусственную шаровую молнию.

Для рассуждения характерно активное использование риторических вопросов. В попытке классификации молний Араго […] не был первым. Древние римляне, например, делили молнии «по предназначению». Так, у них были молнии национальные, семейные, индивидуальные.

Кроме того, молнии могли быть предупреждающие, подтверждающие чью-то власть, увещевательные, угрожающие... Считается, что древние довольно правильно оценивали свойства молнии, в частности стремление ее двигаться по металлам. Наставник императора Нерона философ Сенека писал: «Серебро расплавляется, а кошелек, в котором оно заключалось, остается невредимым». Плиний тоже когда-то заметил, что «золото, медь, серебро, заключенные в мешке, могут быть расплавлены молнией, а мешок не сгорит и даже восковая печать не размягчится».

Издавна известны случаи, когда молнией был причинен значительный материальный ущерб. В декабре 1773 года разрушено в Бретани 24 колокольни. Взрыв был ужален? Приблизительно шестая часть зданий города была полностью разрушена, остальные были в угрожающем состоянии.

Погибло более трех тысяч человек. Все эти случаи, разумеется, вызваны отсутствием громоотвода. Сейчас такого практически не бывает. Самостоятельно подберите наречие меры и степени, которое должен стоять на месте пропуска в первом предложении текста.

Приведем эти "счастливые" случаи. Добравшись до столба, шар переломил его пополам и исчез. Июньским днем 1914 года шаровая молния взорвалась на веранде небольшой гостиницы в немецком городе Ганенклее. Звук напоминал пушечный выстрел и сопровождался дребезжанием электрических звонков и порчей электропроводки. Свет погас. Наконец, весьма интересная маленькая заметка, опубликованная 5 ноября 1936 года английской газетой "Дейли Мейл" в разделе "Письма редактору": "Сэр! Во время грозы я видел большой раскаленный шар, спустившийся с неба. Он ударил в наш дом, перерезал телефонные провода, зажег оконную раму и затем исчез в кадке с водой, стоявшей под окном. Вода кипела затем в течение нескольких минут, но когда она достаточно остыла, чтобы можно было поискать шар, я ничего не смог обнаружить в бочке.

Дерстоун, Херфордшир". Основываясь на всех этих данных, можно в приблизительных чертах набросать "портрет" шаровой молнии. Шаровая молния - прежде всего не всегда шар. Иногда форма ее грушевидная или вытянутая. Размеры - примерно 10 - 20 сантиметров, иногда - до нескольких метров. Цвет от ослепительно белого до оранжево-красного. Не исключены голубые и зеленые оттенки, а также смешанная раскраска "шарик мороженого с красной верхушкой". Время существования - от нескольких секунд до нескольких минут. Есть ли у нас возможность оценить энергию молнии?

Для этого имеются два "свидетельских показания": одно - из газеты "Дейли Мейл", другое - сообщение пассажиров французского экспресса. В первом случае молния попала в бочку с водой, стоявшую на улице в ноябре. Температура воды, таким образом, может быть грубо определена. Вода была нагрета до кипения, ее было, как выяснилось, около двадцати литров, причем некоторое количество - около четырех литров выкипело. Молния была размером "с большой апельсин", шар не упал с неба, а, как указывает автор заметки, "спустился". Следовательно, плотность вещества шаровой молнии лишь немного больше плотности воздуха иногда молнии "плавают" в воздухе - тогда их плотность равна плотности воздуха. Воздух в объеме большого апельсина весит примерно десятые доли грамма. Предположим, что молния весила один грамм. Подсчет прост.

Какова должна была быть температура тела массой в один грамм, чтобы оно могло нагреть 20 литров воды с 10 до 100 градусов и испарить четыре литра воды? Расчеты тоже просты. Но тем неожиданней результат. Оказывается, температура такого тела должна составлять несколько миллионов градусов! Энергия молнии, в соответствии со столь же элементарными подсчетами, оказывается не столь уж колоссальной. Если температура поражает своей большой величиной, то энергия - скорее своей незначительностью. Она составляет величину порядка трех киловатт-часов, в переводе на деньги - около 12 копеек. Лишь 12 копеек стоит энергия, содержащаяся в столь странном, пугающем и непонятном шаре! Можно подойти, правда, к вопросу об энергии шаровой молнии и с другой стороны.

Учёные хотели и до сих пор хотят во что бы то ни стало добиться стабилизации плазмы — состояния вещества, в котором на протяжении миллиардов лет живут звёзды, включая наше родное Солнце, а сделать это архисложно. Поскольку шаровая молния похожа на сгусток плазмы и способна автономно существовать десятки секунд, на явление обратили внимание маститые физики. Среди них был, например, Пётр Капица. Он смог получить сферический газовый разряд в среде гелия, а в 1955 году опубликовал статью «О природе шаровой молнии». Знаменитый советский учёный рассматривал версию о подпитке шаровой молнии энергией извне. И видел в ней прообраз управляемого термоядерного реактора. Сейчас феномену посвящены тысячи экспериментов и теоретических работ. В лабораторных условиях не раз удавалось получить нечто шарообразное и светящееся, правда, так и остаётся неясным, тождественны ли эти объекты тем, что возникают во время грозы в атмосфере и пугают очевидцев одним своим видом.

Долгоживущие они по сравнению с обычным ионизированным воздухом, который при этом объёме прекратил бы свечение за микросекунды». Учёный приводит примеры. Светящиеся шарообразные объекты диаметром 20—30 сантиметров, живущие около секунды, получали из разрядной плазмы во Владимирском государственном университете. В Петербургском институте ядерной физики РАН их стабильно производят при существенно меньших токах и на совсем простом оборудовании. Но время жизни всех этих плазмоидов очень мало, как и их энергия: её не хватает даже на то, чтобы прожечь газету. Какие там погони за несчастными жертвами? Какие убийства и пожары? В прошлом году очередное плазменное образование удалось получить команде финских и американских специалистов.

Они использовали два противоположно направленных потока электронов, в результате чего в лаборатории возник электромагнитный «узел» в форме шара. Эксперимент сняли на видео, а ролик разместили в Сети. Но учёные сами признают, что это была не шаровая молния, а некий «квантовый магнитный вихрь», свойства которого лишь похожи на свойства шаровой молнии.

Задание 20 егэ русский язык 2022 практика в новом формате с ответами варианты с ответами

Мы приведем здесь, с риском утомить читателя, несколько описаний шаровой молнии, выполненных сотни лет назад и в более близкие времена, для того чтобы впоследствии попытаться в них разобраться, разумеется, лишь с той степенью достоверности, которая возможна сейчас, когда загадки шаровой молнии полностью еще объяснены быть не могут даже с помощью весьма ухищренных гипотез. В марте 1720 года огненный шар упал во время грозы на землю в небольшом французском городке. Отскочив, он поразил каменную башню и разрушил ее. В 1772 году лондонские священники Уайтхауз и Питкери увидели в своей церкви окруженный черным дымом огненный шар величиной с кулак, который разорвался с грохотом артиллерийского залпа, распространяя вокруг дьявольский запах серы. Питкери был ранен. На его теле, обуви, часах, одежде остались следы, типичные для «обычной» молнии. Русский ученый Г. Рихман был поражен в голову молнией, которая, по свидетельству гравера Соколова, «имела вид шара» 1752 г. Десятки случаев относятся к «похищению» шаровой молнией драгоценностей и золота. В 1761 году молния проникла в церковь венской академической коллегии, сорвала позолоту с карниза алтарной колонны и отложила ее на серебряной кропильнице.

Молния походила на котенка средней величины, свернувшегося в клубочек и катящегося без помощи лап. Она подкатилась к ногам рабочего, как бы желая поиграть с ним, — тот в страшном испуге отодвинул тихонько ноги, тогда молния поднялась на уровень его лица. Рабочий, как мог осторожно, отвел голову назад. Шар продолжал подыматься к потолку и направлялся, по-видимому, к тому месту в каменной трубе, где когда-то было пробито отверстие, теперь заклеенное бумагой. Молния отклеила бумагу, не попортив ее, затем по-прежнему тихо-благородно ушла в трубу, где и взорвалась со страшным грохотом и роковыми для трубы последствиями. Он, по-видимому, образовался за счет «обычной», перед тем ударившей молнии и проник на кухню через трубу и камин. Женщины, находившиеся на кухне, посоветовали молодому крестьянину, у ног которого оказался шар, раздавить «эту мерзость» и загасить. Однако юноша этот бывал в Париже, где «электризовался» за несколько су на Елисейских Полях и с тех пор чувствовал уважение к таинственным проявлениям электричества. Поэтому он оставил просьбы и советы товарок без внимания, а шар меж тем выкатился во двор, где и разорвался в соседнем хлеву — там его попыталась обнюхать свинья, отнюдь не знакомая с электрическими материями.

Непочтение стоило ей жизни. Большое число примеров «деятельности» шаровой молнии описывает в своей книге «Атмосфера» Фламмарион. Однако он, по-видимому, смешивает иногда шаровую молнию и падение метеоритов. Результат — неверная трактовка шаровой молнии как явления, в котором обязательно присутствует «весомое вещество». Вот примеры из книги Фламмариона. А 25 августа 1880 года во время очень сильной грозы в Париже наблюдатели видели, как из тучи выскочило очень блестящее продолговатое тело около 35—40 сантиметров в длину и 25 сантиметров в ширину с концами, вытянутыми в виде коротких конусов. Это тело было видимо лишь несколько секунд, а затем оно вновь скрылось за тучами, оставив вместо себя небольшое количество какого-то вещества, которое упало на землю вертикально, как бы подчиняясь законам тяготения. При, падении от него отделялись искры или, скорее, красноватые шарики, без блеска, а сзади за ними тянулся блестящий хвост, который, подобно дыму, у самого падающего вещества стоял прямым, вертикальным столбом, и чем выше, тем более становился волнистым. Падая, вещество рассыпалось, понемногу гасло и затем скрылось за домами.

Фламмарион был настолько убежден в том, что подобные примеры говорят в пользу «вещественной» материи молнии, что и сам неоднократно после ударов молний «находил» на камнях, деревьях, домах какие-то остатки смол и непонятных «черных порошков», а то и прямо «раскаленных камушков», занесенных, конечно, молнией. И в современных описаниях иной раз путают шаровую молнию с другими, в достаточной мере загадочными атмосферными или оптическими явлениями. Однако иногда наблюдателям удается не только уверенно распознать шаровую молнию, но и заметить ее типичные свойства, а порой даже суметь оценить ее температуру, энергию и т. Приведем эти «счастливые» случаи. Добравшись до столба, шар переломил его и исчез. Июньским днем 1914 года шаровая молния взорвалась на веранде небольшой гостиницы в немецком городе Ганенклее. Звук напоминал пушечный выстрел и сопровождался дребезжанием электрических звонков и порчей электропроводки. Свет погас. Наконец, весьма интересная маленькая заметка, опубликованная 5 ноября 1936 года английской газетой «Дейли Мейл» в разделе «Письма редактору»: «Сэр!

Во время грозы я видел большой раскаленный шар, спустившийся с неба. Он ударил в наш дом, перерезал телефонные провода, зажег оконную раму и затем исчез в кадке с водой, стоявшей под окном. Вода кипела затем в течение нескольких минут, но когда она точно остыла, чтобы можно было поискать шар, я ничего не смог обнаружить в бочке. Моррис Дерстоун, Херфордшир». Основываясь на всех этих данных, можно в приблизительных чертах набросать «портрет» шаровой молнии. Шаровая молния — прежде всего не всегда шар. Иногда форма ее грушевидная или вытянутая. Размеры — примерно 10—20 сантиметров, иногда до нескольких метров. Цвет от ослепительно белого до оранжево-красного.

Не исключены голубые и зеленые оттенки, а также смешанная раскраска. Время существования — от нескольких секунд до нескольких минут. Есть ли у нас возможности оценить энергию молнии? Для этого имеются два «свидетельских показания»: одно — из газеты «Дейли Мейл», другое — сообщение пассажиров французского экспресса. В первом случае молния попала в бочку с водой, стоявшую на улице в ноябре. Температура воды, таким образом, может быть грубо определена. Вода была нагрета до кипения, ее было, как выяснилось, около 20 литров, причем некоторое количество — около 4 литров — выкипело. Молния была размером «с большой апельсин», шар не упал с неба, а, как указывает автор заметки, «спустился». Следовательно, плотность вещества шаровой молнии лишь немного больше плотности воздуха иногда молнии «плавают» в воздухе — тогда их плотность равна плотности воздуха.

Воздух в объеме большого апельсина весит примерно десятые доли грамма. Предположим, что молния весила 1 грамм. Подсчет прост. Какова должна была быть температура тела массой 1 грамм, чтобы оно могло нагреть 20 литров воды с 10 до 100 градусов и испарить 4 литра воды? Расчеты тоже просты. Но тем неожиданней результат. Оказывается, температура такого тела должна составлять несколько миллионов градусов! Энергия молнии, тоже в соответствии с элементарными подсчетами, оказывается не столь уж колоссальной. Если температура поражает своей большой величиной, то энергия — скорее своей незначительностью.

Она составляет величину порядка 3 киловатт-часов, в переводе на деньги — около 12 копеек. Лишь 12 копеек стоит энергия, содержащаяся в странном, пугающем и непонятном шаре! Можно подойти, правда, к вопросу об энергии шаровой молнии и с другой стороны. Вспомним для этого телеграфный столб, который переломила молния. Для подрыва столбов диаметром 20 сантиметров с помощью толовых шашек используют шашку массой 400 граммов. Если пойти таким путем, можно оценить энергию молнии как величину энергии, содержащейся в толовом заряде. Примерно такого масштаба разрушения мы и находим в большинстве описаний, касающихся шаровой молнии. Но вот плотность энергии — величина энергии, приходящаяся на единицу массы шара, у молнии в сотни раз больше, чем у тола, — это уже величина рекордная, не достижимая ни в каких сделанных руками человека сохраняющих энергию устройствах. Аккумулятор, например, в тысячи и тысячи раз менее емок.

Грандиозным приобретением для человечества был бы аккумулятор нового типа с характеристиками, подобными свойствам шаровой молнии. Тогда, имея небольшой по массе запас «топлива», самолеты могли бы преодолевать многие тысячи километров без посадки. Космические путешественники, как говорится, и в ус не дули бы, имея такие запасы энергии в своем распоряжении. А городской транспорт! Какого он мог бы достигнуть расцвета, если бы электромобили имели в качестве аккумуляторов что-нибудь, хоть отдаленно напоминающее по аккумулирующим свойствам шаровую молнию! Ведь основное препятствие, из-за которого жители больших городов и по сей день не могут освободиться от шумных и вредных для здоровья аппаратов — автомобилей с бензиновыми двигателями, — это отсутствие достаточно емких электрических аккумуляторов, ограничивающее скорость и пробег электромобиля без подзарядки. И эти перспективы, и ущерб, причиняемый шаровой молнией, да и извечная страсть человечества к решению головоломных задач, то и дело встающих на его пути, заставляют нас взвешивать все новые и новые предположения, касающиеся природы шаровой молнии. Такие предположения многочисленны, насчитываются сотнями, и это верный признак того, что мы еще далеки от познания тайны. Практически любая теория возникновения шаровой молнии содержит в себе некие противоречия, не поддающиеся пока убедительному разрешению.

Приведем несколько примеров. Шаровая молния — это горящие клубки газа так считал еще Франсуа Араго или каких-то гремучих смесей, образовавшихся при разрядке «обычной», линейной молнии. Противоречие: в этом случае молния должна была бы быстро «выгореть». Согласно расчетам молния должна была бы исчезнуть через десятые доли секунды, а она иной раз живет целые минуты. Шаровая молния — это образование, вызванное созданием при ударе обычной молнии газообразных химически активных веществ, которые горят в присутствии катализатора, например частичек дыма или пыли известный советский физик-теоретик Я. Но, к сожалению, пока мы не знаем веществ с такой колоссальной теплотворной способностью, которой обладает вещество шаровой молнии. Шаровая молния — клубок горячей плазмы немецкий физик А. Мейснер , бешено вращающийся за счет некоего начального импульса, данного сгустку материнской, линейной молнией. Расчеты показывают, однако, что и эта теория не в состоянии объяснить длительного существования шаровой молнии и ее грандиозной энергии.

Известный советский электротехник Г. Бабат в первые месяцы Великой Отечественной войны, производя в нетопленой лаборатории эксперименты над высокочастотными токами, неожиданно для себя получил… искусственную шаровую молнию. Когда потенциал между электродами на кварцевой трубке внезапно возрос, из трубки со страшной скоростью вырвалось огненное кольцо, удивительно напоминавшее шаровую молнию. Бабат разработал на основе этих экспериментов еще одну теорию шаровой молнии, основанную на том, что центростремительным силам, стремящимся разорвать огненный шар на куски, противостоят появляющиеся на большой скорости вращения силы притяжения между расслоившимися зарядами. Сразу после войны знаменитый советский ученый П. Капица создал во дворе своей дачи на Николиной горе «Избу физических проблем» — собственную лабораторию, оснащенную несложной техникой, приборами и станками. Здесь он обратился к совершенно новому классу физических задач — созданию мощных, непрерывно действующих генераторов сверхвысоких частот. Предварительно он решил сложную теоретическую задачу о движении электронов в генераторах сверхвысокочастотных колебаний. Ему помогал сын Сергей и один из сотрудников.

Новое устройство П. Капица назвал «ниготроном», два первых слога являются аббревиатурой названия местности, где расположена дача, — Николина гора». Мощность ниготрона получилась довольно большой — 175 киловатт. Это хорошая основа для разработки нового научного направления — электроники больших мощностей. При одном из испытаний излучение ниготрона пропускалось через кварцевый шар, наполненный гелием. Вдруг вспыхнуло сильное, имеющее четкие границы, свечение. Через несколько секунд шар в одном месте проплавился, и свечение исчезло. Это, казалось бы, незначительное событие навело Капицу на мысль о сходстве того, что произошло в кварцевом шаре, с шаровой молнией. Он предположил, что шаровая молния получает энергию «со стороны» — при помощи высокочастотного излучения, возникающего в грозовых облаках после обычной молнии.

После снятия секретности на Курчатовские работы по управляемому термоядерному синтезу Капица был несколько обижен, что доклад об этом был сначала сделан в Харуэлле, а не в Академии наук, — выявилось некоторое сходство идеи ниготрона с идеей термоядерного реактора. Капица получал горячую плазму при помощи высокочастотных колебаний. Он смог достичь температуры в миллион градусов. Шаровая молния — это объемный колебательный контур, решил П. Сравнив шаровую молнию с облаком, образовавшимся после атомного взрыва и «высвечивающимся» в течение десятка секунд, Капица пришел к выводу, что молния должна высвечиваться в сотую долю секунды. Раз этого не происходит, молния постоянно должна получать энергию со стороны. Молния улавливает радиоволны, возникающие во время грозовых разрядов. Теория изящно объясняет отмечаемое многими исследователями и случайными наблюдателями «пристрастие» молнии к всевозможным трубам и дымоходам — они являются для молнии волноводами, каналами для передачи энергии. Противоречие — рассказ очевидца из газеты «Дейли Мейл»: молния продолжала испарять воду, уже «утонув» в кадке с водой.

А ведь коснувшись воды, молния уже не смогла бы быть объемным резонатором и получать энергию в виде радиоволн. Однако раз вода кипела, значит, энергия откуда-то все-таки поступала. Шаровая молния, считают многие, — это встреча антивещества, прибывшего из неизведанных далей Вселенной, с веществом, например с пылинкой. Эта широко распространенная гипотеза может объяснить почти все, потому что «подробности» возможной встречи нами пока не изучены и здесь можно предполагать что угодно. Однако остается недоумение: почему шаровые молнии встречаются чаще всего во время гроз? Ведь, исходя из общих соображений, если и попадает на землю антивещество, то попадает оно независимо от того, неистовствует в это время в данной местности гроза или нет. Предположение же о том, что и сами грозы обусловлены антивеществом, пока поддержки не получило. Шаровая молния устроена проще, чем шариковая авторучка, считает сотрудник Научно-исследовательского института механики Московского государственного университета Б. Если в последней — десяток деталей, то в шаровой молнии их всего две — тороидальная токовая оболочка и кольцевое магнитное поле.

В результате их взаимодействия из внутренней полости шара выкачивается воздух. Если электромагнитные усилия стремятся разорвать шар, то давление воздуха, наоборот, стремится смять его. Эти силы могут в некоторых случаях уравновеситься, и шаровая молния приобретает стабильность. Ток течет по внешнему кольцу, не затухая в течение нескольких минут. Наличие вакуума препятствует передаче энергии от молнии окружающей среде, поэтому шаровой молнии не требуются какие-нибудь новые, неизвестные источники энергии. Наличие быстро изменяющегося магнитного поля легко объясняет такие, казалось бы, необъяснимые явления, как пропажа колец и браслетов прямо с руки, а также «прощальный шум» — включение в домах электрических звонков, порча телевизоров и радиоприемников. В кольцах и браслетах, становящихся при быстром движении шара как бы вторичной обмоткой трансформатора, наводятся чудовищные токи, и металлы испаряются прямо с руки настолько быстро, что хозяйки этого даже не замечают! По той же причине звонят звонки и портятся приемники и телевизоры. Не желая вселять в читателей излишний пессимизм, автор не собирается утверждать, что и эта теория, одна из последних по времени, внутренне противоречива.

Он ограничится упоминанием, что и в ней имеются неясности по части источника энергии. А энергия эта очень велика. По свидетельству Максима Горького, он вместе с А. Чеховым и В. Васнецовым видел на Кавказе, как «шар ударился в гору, оторвал огромную скалу и разорвался со страшным треском». Если эту энергию использовать, быть может, удастся создать устройства, которые показались бы сейчас по своим свойствам фантастическими. Надо сказать, что опыты по приручению шаровой молнии уже ведутся. Американским ученым удалось добиться частичного подтверждения теории П. Капицы, получив в луче радиолокатора и сохранив в течение некоторого времени светящиеся плазмоиды — шарики плазмы.

Советским ученым совершенно другим способом тоже удалось получить плазменные сгустки, очень напоминающие шаровую молнию. Однако еще ни разу не удалось получить в этих сгустках неповторимых и в чем-то пугающих свойств настоящей шаровой молнии. Тем интересней загадка. Тем желанней ее решение. Маленькие лоцманы с Бермудских островов На базальтовых стенах и колоннах древнеегипетских храмов среди бесчисленных изображений ибисов, быков, воинов нет-нет да попадется изображение священной рыбы. Специалисты без труда определили — это нильский электрический сом, близкий родственник хорошо знакомого всем нам европейского сома. Видимо, мощный электрический удар, который получали древние египтяне при соприкосновении с этой рыбой, немало способствовал присвоению ей священного титула. Электрические рыбы известны человечеству с древнейших времен. Еще Аристотель, гуляя со своими учениками по ухоженному парку, окружавшему Ликей, поведал им, что электрический скат, обитавший в Средиземном море, «заставляет цепенеть животных, которых он хочет поймать, побеждая их силой удара, живущего в его теле».

А древнеримский врач Скрибоний, говорят, небезуспешно излечивал подагру стареющих римских патрициев с помощью освежающего удара электрического угря. Планомерные исследования электрического ската начались лишь в наше время, когда появилась записывающая импульсы рыб аппаратура. Исследования показали, что среди 300 известных видов электрических рыб лишь немногие дают сильные и редкие импульсы. Так, двухметровый электрический скат способен создать электрический импульс напряжением 50—60 вольт при силе тока до 50 ампер — вполне достаточный, чтобы парализовать рыбу чуть поменьше его самого. Электрические угри, живущие в Амазонке и некоторых других южноамериканских реках, способны развить разность потенциалов 500 вольт — напряжение, опасное для жизни человека. Известный естествоиспытатель А. Гумбольдт, много путешествовавший в бассейне Амазонки, рассказывал о том, как индейцы охотятся на эту рыбу. Перед охотой они выпускают в водоем, где обитают угри, лошадей. Обессилевшие от множества разрядов угри становятся легкой добычей индейцев.

Зачем рыбам электрический разряд? У тех рыб, о которых мы только что говорили, — для нападения и защиты. Электрическому скату, парализующему свою добычу электрическим ударом, овладеть ею другим способом было бы весьма непросто — ведь рот у него… на брюхе. Угорь, парализующий лягушку на расстоянии метра, использует свой удар и для защиты от многочисленных врагов, которые были бы не прочь полакомиться его вкусным мясом. Что представляют собой электрические органы рыб? В первую очередь это особые мускульные клетки, так называемые электрические пластинки, поразительно напоминающие по схеме соединения и конструктивному принципу электробатареи. У электрического ската эти органы занимают порой четверть тела, у электрического сома — большую часть, а у электрического угря ими не занята разве что голова. Есть рыбы, электрические органы у которых невелики и как бы «разбросаны» по телу. Да и разряды этих рыб слабенькие: какие-нибудь жалкие вольты, правда, разряды следуют непрерывно.

К этим рыбам относятся, например, длиннорылы. Судя по первому впечатлению, электрические органы длиннорылам не нужны — слишком слабы сигналы. Однако многочисленные измерения электрических полей этих рыб выяснили знаменательную вещь: при движении рыб их электрическое поле остается неподвижным, ибо неподвижны те участки тела, которыми это поле создается. Длиннорылы передвигаются иначе, чем большинство рыб. При перемещении их туловище не совершает столь удобных волнообразных движений — оно остается неподвижным. И это очень важно — рыбы оказались способными даже при движении чувствовать малейшие изменения конфигурации их электрического поля, вызванные, например, другой рыбой. Изменение поля — и немедленная реакция — в атаку! Такие реакции, возможно, вызваны условиями жизни — ведь длиннорылы обычно обитают в мутной воде и вообще видят плоховато. Да и охотятся они, правду сказать, ночью.

Нужно, однако, тут же отметить, что электрические рыбы совсем не монополисты «электрического чувства». Множество существ может ощущать электрическое поле, что совсем недоступно царю природы — человеку. Кстати, семенные клетки человека, сперматозоиды, согласно сообщениям некоторых ученых, хотя и с трудом, но отличают «плюс» от «минуса». Эта способность, пока еще неподтвержденная, открыла бы гигантские перспективы и гигантские же проблемы — ведь матери с отцом представилась бы возможность по своему произволу выбирать пол ребенка, который должен у них родиться! На возможность «сортировки» семенных клеток по полу указывает уже широко использующееся в животноводстве свойство спермы, порождающей самцов, двигаться к положительному полюсу электрического поля, а спермы, порождающей самок, — к полюсу отрицательному. Метод не слишком надежный, но лучше что-то, чем ничего. Такие же «камешки» есть и у человека — это отолиты — они указывают направление силы тяжести. Однажды исследователи заменили рачьи камешки магнитными опилками. Теперь при поднесении к раку магнита у него проявляется «магнитное чувство» — он располагается в плоскости, перпендикулярной равнодействующей магнитной силы и силы тяжести.

Если на барабанную перепонку человека приклеить небольшие кусочки железа, человек начинает воспринимать «на слух» магнитные колебания. Путь к «магнитному чувству»? Может быть, его можно использовать для глухих? Такие попытки делаются, и некоторые из них небезуспешны. Шестое чувство? В США и Канаде для отгона миног от мест скопления мальков, которых миноги бессовестно пожирали, на реках, впадающих в Великие озера, установлены электромагнитные барьеры. Советский биолог Ю. Холодов сумел добиться у некоторых рыб условного рефлекса на постоянное магнитное поле. Но если уж рыбы способны таким образом чутко реагировать на всевозможные магнитные поля, то не объясняется ли этим их способность ориентироваться в безбрежных просторах океана?

Вот речные угри, пересекающие тысячемильные просторы Атлантики на пути к вожделенным Бермудским островам, где природой начертано им метать икру и… погибнуть после утомительного путешествия и изнурительного акта создания новых жизней. А маленькие угри, вылупляющиеся из икринок, отправляются без чуткого родительского руководства к родным берегам, через те же тысячемильные просторы.

Считается, что древние довольно правильно оценивали свойства молнии, в частности стремление ее двигаться по металлам.

Другие времена — другие нравы. Наставник императора Нерона философ Сенека писал: «Серебро расплавляется, а кошелек, в котором оно заключалось, остается невредимым». Плиний тоже когда-то заметил, что «золото, медь, серебро, заключенные в мешке, могут быть расплавлены молнией, а мешок не сгорит и даже восковая печать не размягчится».

Издавна известны случаи, когда молнией был причинен значительный материальный ущерб. В декабре 1773 года разрушено в Бретани 24 колокольни. В январе 1762 года молния ударила в колокольню Бригской церкви в Корнуэлле.

Юго-западная башня в результате удара была разнесена на кусочки: один такой «кусочек» весом в полтора центнера был переброшен через крышу церкви на расстояние около 50 метров, другой, поменьше, — на расстояние 400 метров. Взрыв был ужален — башня целиком оказалась в воздухе, раздробленная на тысячи обломков, которые каменным дождем упали на город. Приблизительно шестая часть зданий города была полностью разрушена, остальные были в угрожающем состоянии.

Погибло более трех тысяч человек. Все эти случаи, разумеется, вызваны отсутствием громоотвода. Сейчас такого практически не бывает.

Долгое время ученые не могли детально изучить это редчайшее явление. Молния находилась в области досягаемости многих устройств сбора анализов и была зарегистрирована системой картографирования молний, двумя метеорадарами и инструментами одного из спутников на фиксированной орбите. Это позволило ученым детально изучить явление. Исходя из полученных данных, ученые обнаружили, что импульс достигал около 8 км в высоту, достигнув линии, где заканчивается атмосфера Земли и начинается космическое пространство.

Франсуа Араго Гром и молния книга. Оптическая активность кварца. Араго что открыл. Араго физик. В попытке классификации молний араго не был Франсуа Араго. Араго ученый.

Доминик Франсуа Араго прибор магнетизм. В попытке классификации молний Араго. Работа Рафаэля Араго. Доминик Франсуа Араго. Физические исследования. Араго физик исследование. Доминик Араго открытия. Доминик Араго кратко о его открытиях. Мжан Батист биожан Батист био. Математика в античности.

Франсуа Араго астроном. Леверье астроном. В попытке классификации молний араго не был Доминик Франсуа Араго. Доминик Араго кратко. Франсуа Араго. Франсуа Араго фото. Опыты Френеля и Араго. Испания 1830 год. Д Ф Араго. Доменик Франсуа Араго 1786-1853 г.

Классификация молний. Классификация перенапряжений. Классификация перегрузок. Внешние перенапряжения. Доминик Франсуа Араго молния. Опыт Араго. Опыты Араго магнитное поле. Араго Франция. Основные характеристики молнии. Линейная молния характеристика.

Скорость молнии. Основные параметры молнии. Франсуа Араго эксперимент. Многозначность понятия наука. Гуго сен-Викторский. Классификация наук Гуго сен Викторского.

Ученые доказали существование перевернутых молний

Ученым из института Джорджии удалось зафиксировать удар перевернутой молнии в Оклахоме в 2018 году. Франсуа Араго, французский физик и астроном, живший в 19 веке, был первым, кто решил изучить природу шаровых молний и систематизировал случаи наблюдения их. В попытке классификации молний Араго [ ] не был первым.

Ученые доказали, что перевернутые молнии существуют

В попытке классификации Араго. В попытке классификации молний. С башни сигнал принимают 8 спутников «Орбита», которые помогают донести новости для всех зрителей в стране.

Познавая историю классификации молний до открытия Араго

В попытке классификации молний араго. Доминик Араго открытия. Араго удалось собрать и систематизировать многочисленные свидетельства очевидцев, однако, большинство историй по-прежнему вызывали в научных кругах скептические дискуссии. В попытке классификации молний Араго [ ] не был первым. В связи с тем, что появление шаровой молнии как природного явления происходит редко, а попытки искусственно воспроизвести его в масштабах природного явления не удаются, основным материалом для изучения шаровых молний являются свидетельства.

Похожие новости:

Оцените статью
Добавить комментарий