На термоядерной установке в Национальной лаборатории им. Лоуренса в Ливерморе, США за несколько месяцев энергопроизводительность выросла в 8 раз. Учёные из США впервые сгенерировали больше энергии в ходе реакции управляемого термоядерного синтеза, чем потребляет топливная капсула, в которой запускается слияние.
Вестник РАН, 2021, T. 91, № 5, стр. 470-478
Таммом, предложившими удерживать плазму с помощью магнитного поля. Нужно было только придумать технологию, с помощью которой вещество можно не только довести до необходимой температуры, но и удержать его. Другими словами, создать ловушку для плазмы. В целом она представляет собой электрически нейтральную среду.
Плотная высокотемпературная плазма находится только в звездах, на Земле ее можно получить лишь в лабораторных условиях. Эта необычная для нас «лучистая материя» поражает воображение большим числом степеней свободы и одновременно способностью к самоорганизации и отклику на внешнее воздействие, такое как электрические и магнитные поля. Плазму можно удерживать в магнитном поле, заставляя принимать различные формы, но она стремится занять наиболее энергетически выгодное для нее положение: подобно живому организму, она будет вырываться на свободу из жесткой «клетки» магнитной ловушки, если конфигурация последней ее не устраивает Шошин, Аникеев, 2007 Наши ученые выдвинули идею замкнутого магнитного термоядерного реактора.
Проблема в том, что магнитное поле сжимает и удерживает плазму в поперечном направлении относительно силовых линий, а вот вдоль них плазма течет свободно, как по рельсам. Работа над созданием токамаков стала важнейшим шагом на пути к термоядерной энергетике. Этот параметр фактор Q , естественно, должен быть больше единицы.
Для промышленной же электростанции значение Q должно быть не меньше пяти: только в этом случае заряженные альфа-частицы, которые вместе с нейтронами рождаются при термоядерной реакции, но, в отличие от последних, не покидают магнитную ловушку, будут способствовать поддержанию высокой температуры. Таким образом, при Q, равном пяти, достаточно один раз «зажечь» плазму, а потом никаких дополнительных манипуляций с реактором проводить уже не нужно. В идеале значение Q должно достигать десяти.
Но создание подобной установки не под силу ни одной стране мира в одиночку. Поэтому в 1980-х гг. Горбачев, президенты Р.
Рейган США и Ф. Миттеран Франция поддержали эту идею. Но прошло еще два десятилетия, прежде чем мир сделал очередной шаг к термоядерному будущему: было определено место для строительства экспериментального реактора.
Выбор пал на область Прованс на юго-востоке Франции. Это место соответствовало всем требованиям, включая комфортный климат и хорошую транспортную доступность, в том числе по морю. Последнее было важно, так как планировалась транспортировка громоздких деталей, вес которых мог достигать 100 т и более.
Несмотря на все ограничения, связанные с коронавирусом, все работы по монтажу начинаются в срок, так что пуск реактора и получение на нем первой плазмы должны состояться уже через пять лет. Бернар Бижо, генеральный директор проекта Международного экспериментального термоядерного реактора: «Мы начинаем работу над этапом сборки, и нам предстоит самая сложная часть работы. Мы должны в жесткие сроки решить сложнейшую головоломку по сбору всех элементов конструкции — этого 3D-пазла , в котором каждый элемент должен работать с точностью швейцарских часов». Подобный проект — это новая веха в международном сотрудничестве. По масштабам его можно сравнить с Международной космической станцией или Большим адронным коллайдером. ИТЭР — это 35 государств, работающих сообща. Эмманюэль Макрон, президент Франции: «В истории человечества порой наступают такие моменты, когда мы должны оставить в стороне наши разногласия для решения общей, объединяющей всех нас задачи. Создание ИТЭР в середине 2000-х стало именно таким моментом. В основе проекта лежит разработанная в нашей стране концепция установки токамак.
Сфера с топливом, «купаясь» в излучаемом хольраумом рентгеновском излучении начинает испаряться снаружи, а реактивная сила отдачи начинает сжимать внутренние слои к центру симметрии капсулы. Примерно за 2 наносекунды при давлении в 200 миллиардов атмосфер размер сферы уменьшается в 30 раз, а плотность топлива возрастает до 1000-1300 грамм на кубический сантиметр — примерно в 100 раз плотнее свинца. В момент максимального сжатия, в разогретой центральной части начинается термоядерная реакция, которая, как пожар, распространяется от центра к периферии. Всего несколько десятков пикосекунд продолжается горение, мощность которого в этот короткий миг сравнимо с потоком солнечной энергии на всю планету Земля и в десятки тысяч раз превосходит всю остальную мощность человеческой цивилизации. Как итог — в 2019-2020 году выход термоядерной энергии в экспериментах NIF начал заметно расти, перешагнул порог 100 килоджоулей, а весной 2021 года несколько выстрелов дали энергии от 400 до 700 килоджоулей и наконец 8 августа 2021 года — 1350 килоджоулей. Эта энергия в 2-5 раз превосходила энергию рентгеновского излучения от стенок хольраума и в 10-20 раз — энергию, переданную топливной сфере и свидетельствовала о том, что зажженная термоядерная реакция в маленькой точке в центре сжатой сферы успевает прогреть и поджечь окружающий ее относительно холодный топливный материал. Теперь ученые, работающие в NIF провели пресс-конференцию, где рассказали, что 5 декабря 2022 года, при мощности лазера в 114 процентов от номинальной командой было получено заметное превышение выхода термоядерной энергии 3,15 мегаджоулей над вложенной энергией лазера 2,05 мегаджоулей , что является рекордным достижением для всех установок термоядерного синтеза. Журнал Science добавляет несколько деталей про выстрел 5 декабря.
Рекордный эксперимент потребовал заметных усилий от команды экспериментаторов. Для корпуса топливной капсулы использовался искусственный алмаз, который давал наиболее гладкую сферическую поверхность без пор. Было максимально уменьшено отверстие, через которое капсула заполняется топливом. Лазер был настроен на максимальную мощность и энергию, что позволило придать испаренной оболочке капсулы больше ускорения и сжать топливо чуть больше. За три месяца до рекорда, команда NIF уже опробовала эти улучшения, получив энерговыход в 1,2 мегаджоуля. Проблема, как оказалась, лежала в недостаточно симметричном обжатии, на последнем этапе капсула превратилась скорее в блин, чем в плотный шарик. Путем подстройки мощности каждого из 192 лучей удалось улучшить сферичность сжатия и как итог — получить рекордную термоядерную энергию. Никаких других подробностей об эксперименте нет: команда не опубликовала научную статью о своем результате.
Много это или мало? Эффективность термоядерных установок оценивают в Q — это отношение выделившейся термоядерной энергии к вложенной в плазму энергии нагрева. Сейчас Q в эксперименте на NIF достиг значения 1,54. Это значительно лучше достижений другой ветви управляемого термоядерного синтеза — магнитного удержания плазмы с помощью токамаков. Однако с инженерной точки зрения эти показатели не очень существенны, поскольку важен баланс затраченной и полученной электроэнергии. Посмотрим, что такое эксперимент на NIF с точки зрения баланса энергии цифры взяты из эксперимента 2021 года : NIF тратит 400 мегаджоулей на работу ламп-вспышек и еще 100 мегаджоулей на другие нужды установки Лампы-вспышки накачивают примерно 50 мегаджоулей в активную среду генерации лазеров Затем 4,2 мегаджоуля инфракрасного лазерного излучения конвертируют в ультрафиолет Лазерный ультрафиолет приносит в хольраум 1,8 мегаджоуля Хольраум производит 300 килоджоулей рентгеновского излучения Капсула поглощает 40-50 килоджоулей рентгена и схлопывается, производя термоядерную энергию — 1,35 мегаджоулей. В декабрьском эксперименте термоядерной энергии выделилось более чем в два раза больше — 3,05 мегаджоулей. Цифры говорят, что инженерам еще надо долго совершенствовать установку, чтобы она научилась перекрывать начальные затраты в сотни мегаджоулей.
Поэтому, хотя нам может показаться, что мы видим смену лидера — после 50 лет превосходства токамаков в Q, внезапно вперед вырывается инерциальный синтез, зрелость токамаков, как энергетических установок значительно выше. Инженерам придется ответить на множество вопросов: как оптимально поглощать и отводить на генераторы гигаджоули энергии, выделяющиеся в шарике размером несколько микрон?
Повторный эксперимент был нужен для того, чтобы подтвердить, что первоначальный успех не был случайностью и технология действительно позволяет генерировать больше энергии, чем затрачивается на запуск реакции. Термоядерный синтез — это процесс, при котором два легких атомных ядра объединяются в одно более тяжелое, высвобождая большое количество энергии. В 1960-х годах группа ученых-первопроходцев из LLNL выдвинула гипотезу, что лазеры можно использовать для индукции термоядерного синтеза в лабораторных условиях. Ученые развивали идею термоядерного синтеза с инерционным удержанием в лаборатории в течение почти 60 лет, пока впервые достигли успеха.
и
Хотя пока еще нельзя говорить, что NIF может устойчиво производить энергию. Установка, созданная Helion Energy — реактор Trenta — использует другой принцип. Плазма разогревается в двух источниках, и ее потоки сталкиваются в камере сгорания. В ней достигаются условия, при которых начинается термоядерный синтез и выделяется энергия. Trenta создает те же 100 миллионов градусов, что и NIF. Но эти «градусы» много дешевле.
Сейчас «перезарядка» реактора занимает 10 минут, но усовершенствованная установка должна «стрелять» каждую секунду. При такой «скорострельности» она может выдавать энергию непрерывно. Может так случиться, что небольшой коммерческий проект Helion Energy первым достигнет энергетической самоокупаемости термоядерной установки, опередив и государственные, и международные программы. А если Helion Energy притормозит, его может опередить другой стартап — Commonwealth Fusion Systems, созданный физиками из Массачусетского технологического института. Запустить свою установку эта компания планирует в 2025 году.
Что умеют программные роботы В прошлом году Ливерморская национальная лаборатория при Минэнерго США в ходе эксперимента по управляемому термоядерному синтезу облучила капсулу с изотопами водорода, дейтерия и трития, самым большим в мире лазером. Министерство энергетики объявило о «крупном научном прорыве, на достижение которого ушли десятки лет и который откроет путь к прогрессу в национальной безопасности и будущем чистой энергии». Через полгода ученые-ядерщики закрепили свой успех и подтвердили, что вновь достигли положительной по затратам энергии термоядерной реакции синтеза, хотя точных данных пока не огласили. Как сообщает Reuters, результаты будут обнародованы на пресс-конференции и опубликованы в научных журналах. И все же о достижении экономически выгодного управляемого термоядерного синтеза пока говорить рано.
Установка Национального комплекса зажигания использует метод инерционного синтеза, который заключается в облучении изотопов водорода лазерным пучком.
Реакторы термоядерного синтеза имитируют ядерный процесс внутри Солнца, сталкивая более легкие атомы вместе и превращая их в более тяжелые, и выделяя огромное количество энергии по пути. На Солнце этот процесс приводится в действие силой гравитации. Одно из построенных решений представлено ИТЭР, ранее известным как Международный термоядерный экспериментальный реактор, который строится с 2010 года в Карадаше, Франция.
Установку построили на основе модифицированного реактора HT-7. Радиус ее внешнего корпуса составляет 1,7 метра. В мае 2021 года ученым удалось установить первый рекорд. Тогда реактор нагрелся до 120 миллионов градусов по Цельсию, но проработал всего 101 секунду 1,6 минуты. Ученые считают, что с помощью токамака удастся получить источник неограниченной чистой энергии, так как водород и дейтерий в изобилии присутствуют на Земле. Но для этого необходимо добиться того, чтобы установка могла стабильно работать при высокой температуре длительное время.
Эксперимент китайских ученых продлится до июня. По словам инженера-физика, если речь идет о единичном научном приборе, то его сооружение, эксплуатация и обращение с радиоактивными отходами может осуществляться контролируемо. Здесь катастрофы, сравнимые с Чернобылем, невозможны, но в результате работы таких устройств происходит активация, то есть становятся радиоактивными элементы конструкции», — подчеркнул Ожаровский. Он пояснил, что при активации то, что было нерадиоактивным, становится радиоактивным из-за нейтронного облучения.
Самая грандиозная научная стройка современности. Как во Франции строят термоядерный реактор ITER
Пара слов о физике плазмы: на волне Волна боянов, Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Токамак, Длиннопост. Реакторы термоядерного синтеза имитируют ядерный процесс внутри Солнца, сталкивая более легкие атомы вместе и превращая их в более тяжелые. Российские ученые совершили рывок к "главной задаче физики XXI века" — управляемой термоядерной реакции. — Валентин Пантелеймонович, понятно, что получение термоядерной плазмы — предел мечтаний физиков-ядерщиков.
Что такое термоядерный синтез и зачем он нужен?
Меня уже несколько раз просили подробнее рассказать о термоядерном синтезе, термоядерных реакциях и вот этом вот всём. Ученые Института ядерной физики а СО РАН (ИЯФ, Новосибирск) добились ускорения плазмы в термоядерной установке "СМОЛА", где вещество удерживается. Хотя об этом еще не было объявлено публично, эта новость быстро распространилась среди физиков и других ученых, изучающих термоядерный синтез.
Самая грандиозная научная стройка современности. Как во Франции строят термоядерный реактор ITER
Термоядерный синтез представляет собой процесс, во время которого два лёгких атомных ядра объединяются в одно более тяжёлое с высвобождением большого количества энергии. Для исследования лазерного термоядерного синтеза разработаны мишени прямого и непрямого облучения. Американцы совершили прорыв в изучении термоядерной энергии. Термоядерный реактор Zap сначала вдувает газ в камеру, затем мощный импульс энергии ионизирует его в плазменную нить, проводящую сверхсильный ток. Ещё с 1950-х годов прошлого века физики мечтали использовать термоядерный синтез для получения энергии, но прежде не получалось добыть больше энергии.
Американские физики повторно добились термоядерного зажигания
Ученые в США провели третий успешный эксперимент с ядерным синтезом | В запущенном в Китае реакторе термоядерного синтеза использовалось достижение российских ученых, создавших устройство, отслеживающее температуру плазмы. |
Американские физики повторно добились термоядерного зажигания | На этой неделе на юге Франции началась сборка первого в мире термоядерного реактора. |
Мегаджоули управляемого термоядерного синтеза | Поэтому в 1980-х гг. советские физики-ядерщики выступили с инициативой строительства международного экспериментального термоядерного реактора – с проектом ИТЭР. |
Мегаджоули управляемого термоядерного синтеза | Пара слов о физике плазмы: на волне Волна боянов, Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Токамак, Длиннопост. |
Мегаджоули управляемого термоядерного синтеза
Металлическая пыль скатывается с пологих поверхностей мишеней и попадает в щели. Оттуда ей очень трудно вновь попасть в плазменный шнур. Дивертор выполнен из 54 кассет [25] , общим весом 700 т. Корпус кассеты — высокопрочная нержавеющая сталь. По мере износа кассеты будут демонтироваться, и на их место устанавливаться другие. Мало какой материал способен длительно срок службы токамака 20 лет выдерживать такой нагрев. На начальных стадиях проектирования токамака планировалось выполнить мишени из углеродного композита, армированного углеродным волокном англ. Система охлаждения дивертора будет работать в околокипящем режиме.
Суть этого режима такова: теплоноситель дистиллированная вода начинает закипать, но ещё не кипит. Микроскопические пузырьки пара способствуют интенсивной конвекции, поэтому этот режим позволяет отводить от нагретых деталей наибольшее количество тепла. Однако есть и опасность — если теплоноситель всё-таки закипит, пузырьки пара увеличатся в размерах, резко снизив теплоотвод. Для контроля за состоянием теплоносителя на ITER установлены акустические датчики. По шуму, который создают пузырьки в трубопроводах, будет оцениваться режим, в котором находится теплоноситель. Системы нагрева плазмы[ править править код ] Для того, чтобы ядра трития вступили в реакцию слияния с ядрами дейтерия, они должны преодолеть взаимное электростатическое отталкивание — кулоновский барьер. При такой высокой температуре кинетическая энергия ядер становится достаточной, чтобы кулоновский барьер был преодолён и термоядерная реакция «зажглась».
После зажигания термоядерной реакции предполагается, что можно будет выключить внешние нагреватели плазмы или снизить их мощность. Ожидается, что термоядерная реакция станет самоподдерживающейся. Кроме того, можно задействовать для нагрева плазмы еще и центральный соленоид. Поднимая напряжение в соленоиде от нуля до 30 кВ, можно индуцировать в короткозамкнутом плазменном витке электрический ток. За счет омического нагрева выделяется дополнительное тепло. Такой способ нагрева называется индукционным. Electron Cyclotron Resonance Heating разогревает электроны плазменного шнура, а также используется для отвода тепла в определённых местах в плазме в качестве механизма минимизации нарастания определённых неустойчивостей, приводящих к охлаждению плазмы.
Она выполняет роль «стартера» плазмы в начале выстрела, разогревая нейтральный газ, заполняющий вакуумную камеру. В качестве источников энергии применены гиротроны , каждый мощностью 1 МВт, рабочей частотой 170 ГГц и длительностью импульса более 500 с. Всего гиротронов 24. Они расположены в Здании радиочастотного нагрева и передают свою энергию по волноводам, длина которых составляет 160 м. Производством гиротронов заняты Япония, Россия, Европа и Индия. В конце февраля 2015 года Япония продемонстрировала первый произведённый гиротрон. Все гиротроны предполагалось поставить в ITER в начале 2018 года [27].
Это является ключевым шагом на пути к разработке термоядерного реактора, передает информагентство Синьхуа. Прорыв, достигнутый после более чем 120 000 попыток, значительно улучшил предыдущий мировой рекорд токамака в 101 секунду, установленный в 2017 году. Такие же процессы происходят на Солнце, а сырьем для термоядерной энергии может быть обычная морская вода. Сун Юньтао, директор ASIPP, сказал, что главное значение этого прорыва заключается в режиме высокого уровня удержания.
Мы предложили свою классификацию, основанную на анализе литературы. Изначально аббревиатура «токамак» пришла из Курчатовского института тогда он назывался Институт атомной энергии им. Курчатова , где токамаки и были изобретены, и где в 1954 г. За рубежом тогда уже были установки типа стеллараторы, отличающиеся от токамаков отсутствием в них тороидального тока. На данный момент многие стеллараторы переделаны в токамаки, тем не менее, в некоторых странах они сохраняются, и с их помощью также продолжаются попытки приблизить плазму к термоядерной. Вообще токамаков за всю историю существования, с 1954 г.
Но он морально и физически устарел, ему 40 с лишним лет. В Курчатовском институте сооружается современный токамак с вытянутым по вертикали поперечным сечением Т-15, но окончательные сроки вывода данной установки на проектные режимы не определены. Но параметры плазмы на этой установке относительно высокие, они составляют конкуренцию зарубежным установкам аналогичного типа... Нашей команде сейчас требуется в минимальном объеме всего 10 млн руб. Нам вообще ничего не нужно, кроме аппаратуры реального времени, и еще некоторый объем средств на зарплату и командировки, чтобы молодые люди не уходили в коммерческие компании. И мы тогда можем идти по намеченному пути. В заключение можно отметить тот факт, что первая атомная электростанция была введена в эксплуатацию в городе Обнинск в 1954 году, а пуск первого токамака произведен также в 1954 году в ИАЭ им. Но это была экспериментальная установка и все последующие, включая ITER, — также экспериментальные установки типа токамак. Беседу вела Ирина Татевосян 2018 год Тем временем в Китае 30. Он может стать первым реактором ядерного синтеза, генерирующим достаточно энергии для производства электричества.
По словам одного из ведущих ученых, Китай сможет производить электроэнергию с помощью предлагаемого "искусственного солнца" уже через десять лет, если проект получит окончательное одобрение правительства. Строительство реактора ядерного синтеза может быть завершено к началу 2030х годов, если официальный Пекин даст добро, сказал профессор Сонг Юнтао сотрудникам средств массовой информации на конференции по контролю за выбросами углерода в Пекине в воскресенье. Китайский испытательный реактор Fusion Engineering Технология термоядерного синтеза, также известная как искусственное солнце, может обеспечить бесконечный запас чистой энергии, имитируя процесс ядерного синтеза на солнце, хотя технические сложности значительны, и попытки международного сообщества разработать данную технологию столкнулись с трудностями и растущими затратами. Руководство страны попросило ученых провести подготовительные работы по созданию Китайского испытательного реактора термоядерного синтеза CFETR , включая проектирование и строительство крупного испытательного центра в городе Хэфэй. Но Сонг, директор Института физики плазмы в Хэфэе, сообщил Beijing News, что окончательное разрешение еще не получено. Цель этого проекта заключается в том, чтобы CFETR стал первой установкой, вырабатывающей электроэнергию за счет тепла термоядерного синтеза. Для этого необходимо контролировать работу экстремально горячего газа - водорода, температура которого в реакторе должна достигать 100 миллионов градусов Цельсия 180 миллионов по Фаренгейту или даже превышать их. Фото: Синьхуа На первом этапе работы реактор рассчитан на получение стабилизированного выхода мощности - необходимой для выработки электроэнергии - в 200 мегаватт, что примерно соответствует мощности небольшой угольной электростанции. Китайский термоядерный реактор, вероятно, не будет первым в мире: строительство Международного термоядерного экспериментального реактора ITER на юге Франции почти завершено, и он может быть запущен к 2025 году. Но после многочисленных задержек с момента начала строительства в 2007 году ИТЭР стал самым дорогим международным научным проектом в истории, который обойдется странам-участницам, включая Китай, в сумму от 45 до 65 миллиардов долларов США.
И хотя он впервые воплотит в жизнь идею искусственного солнца, вырабатываемое им количество тепла не может быть устойчивым, чтобы генерировать достаточно энергии для производства электричества, как это делает китайский реактор. Сонг сказал, что Китай и другие страны оказывают содействие и следят за прогрессом во Франции, используя знания и технологии, разработанные для ITER, для совершенствования своих собственных проектов термоядерных реакторов - гонка за их разработку разгорается. Китайские исследования в области термоядерного синтеза изначально проводились с использованием российского оборудования и технологий, но в последние годы, по словам Сонга, Китай занял лидирующие позиции в этой области. В мае на моделирующем устройстве в Хэфэе была создана горящая плазма с температурой 150 миллионов градусов Цельсия, которая поддерживалась на стабильном уровне более 100 секунд, что является мировым рекордом. Ученые удерживали горячий газ, который был чрезвычайно непредсказуем и мог разрушить все, чего бы он ни коснулся, с помощью сверхсильного магнитного поля, созданного на основе сверхпроводников. Сонг сказал, что следующей целью китайского проекта будет увеличение продолжительности горения до 400, а затем до 1 000 секунд. По словам Сонга, эта разработка принесла положительные результаты и в других отраслях. Благодаря достижениям в исследованиях термоядерного синтеза, китайские производственные мощности по выпуску сверхпроводящих материалов увеличились в 10 000 раз, отметил он. Сверхпроводниковая продукция необходима в самых разных отраслях, от транспорта до медицинского оборудования, и рост производства позволяет значительно снизить ее цену. Китайское правительство планирует начать массовое строительство термоядерных электростанций до 2060 года - крайнего срока для достижения поставленной страной цели по обеспечению углеродной нейтральности окружающей среды.
В Британии 24.
Если не сжимать разогретую плазму со всех сторон равномерно, она выскользнет, остынет, и реакции в ней прекратятся. Плазма подобна надутому воздушному шарику — как бы равномерно вы ни надавливали на него, шар всегда будет просачиваться через пространство между пальцами. Солнечная плазма не разлетается по всему космосу из-за огромной массы звезды — ее гравитационное давление постоянно сжимает ядра атомов вместе. Масса Земли в 330 тысяч раз меньше, поэтому создать подобное давление на нашей планете невероятно трудно. Каждый раз, когда ученые пытались сжать плазму в реакторе, она выплескивалась наружу. Как причесать ежа, или попытки удержать плазму К решению задачи удержания плазмы вплотную подошли советские ученые Института им. Курчатова в 1950-х. В магнитной ловушке, созданной под руководством академиков Андрея Сахарова и Игоря Тамма, горячая смесь дейтерия и трития удерживалась с помощью магнитного поля и не касалась стенок реактора. Эта экспериментальная установка c вакуумной камерой в форме бублика тора стала известна во всем мире под именем Токамак — тороидальная камера с магнитными катушками.
В ней впервые удалось достичь температуры термоядерной реакции в 100 миллионов градусов — почти в 10 раз больше, чем внутри Солнца! У любого термоядерного реактора типа токамака есть отверстие в центре. Объясняется это теоремой о причесывании ежа, согласно которой невозможно причесать свернувшегося клубком ежика так, чтобы ни одна его иголка не торчала наружу. Если придать плазме форму шара, то ее магнитное поле всегда будет иметь минимум одну выпадающую точку. С тором такой проблемы не возникнет, его можно гладко «причесать» по всей поверхности, причем разными способами. Так выглядит изнутри тороидальная камера токамак для осуществления реакции синтеза Прошло почти 70 лет, но токамак все еще остается самым перспективным типом термоядерных реакторов — практически у каждой развитой страны сегодня есть собственная тороидальная установка. Реакторы других форм создают для изучения свойств плазмы. Например, сферический токамак напоминает сплюснутый глобус и позволяет дольше удерживать плазму. А в стеллараторе, прозванном «мятым бубликом», магнитные катушки находятся снаружи тора, за счет чего он может работать без перерывов, в отличие от классического токамака. Существуют и альтернативные виды реакторов, например установки на инерциальном удержании.
На тритий-дейтериевую мишень размером с булавочную головку направляют больше сотни сверхмощных лазеров. Они нагревают мишень до сотен миллионов градусов и сжимают в тысячи раз, запуская термоядерную реакцию. Такую энергию, полученную лазерным синтезом, можно контролировать и использовать. Однако подобные реакторы работают в импульсном непостоянном режиме, поэтому вещество быстро разлетается и долго удерживать плазму не удается. Отдельная задача в том, чтобы сжать вещество абсолютно симметрично со всех сторон.
Искусственное солнце: как первый в мире термоядерный реактор изменит мир
Но на самом деле надо смотреть, сколько установка потребила энергии из розетки. Это будут совсем другие цифры. Все это пока сильно охлаждает мысль о том, что завтра у нас будут фабрики с термоядерными управляемыми реакторами. И там тоже будет использоваться рентгеновский диапазон излучения для обжатия мишени, как и американцев, но есть свои интересные наработки. Работы пока проводятся на уровне энергии в несколько десятков килоджоулей.. На полный уровень энергии 2. Первая — это проблема устойчивости плазмы. На бумаге все было красиво, но жизнь внесла свои коррективы. Оказалось, что в реальности добиться сферического обжатия мишени очень сложно.
Второе — не хватало мощности лазеров. По сравнению с первыми экспериментами они сегодня в несколько сотен раз мощнее. Им придется восстанавливать установку еще довольно долго. Но если коротко, многим, чем мы сегодня обладаем, мы обязаны этому человеку. Это и идея термоядерного синтеза, которая воплощается на наших глазах, и спутниковая навигация. Первые стандарты частоты, мазеры и лазеры, — это все его пионерские идеи.
Но хотя проект ИТЭР сегодня является технологической платформой термоядерной энергетики, для создания самого термоядерного реактора необходимо развить еще ряд технологий, выходящих за рамки проекта. Например, нужно решить проблемы с генерацией стационарного неиндуктивного тока, созданием электромагнитной системы из высокотемпературного сверхпроводника и т. Эксперименты, которые в дальнейшем будут проводиться на ИТЭР, дополнят этот перечень.
В программах термоядерных исследований всех технологически развитых стран в качестве горючего сегодня рассматривается дейтерий-тритиевая смесь. Планируется, что полномасштабная реализация процессов горения термоядерной плазмы в ИТЭР будет достигнута во второй половине 2030-х гг. Но потребуется еще около 15 лет, чтобы построить термоядерный реактор ДЕМО , где будет генерироваться электрическая и тепловая энергия» Институт ядерной физики им. Порт-плаг одновременно служит и «окном» в горячую область, так как является носителем многочисленных диагностических устройств, и «пробкой» на пути потока нейтронов, генерируемых в плазме. В защитных модулях порт-плагов разместят диагностические системы, поставляющие информацию о состоянии вещества на центральный пульт. В 2019 г. Интеграционная площадка для сборки порт-плагов уже готовится. Это будет «чистое» помещение, где содержание пыли, микроорганизмов, аэрозольных частиц и химических паров будет постоянно контролироваться и поддерживаться на определенном уровне. Поэтому все работы должны быть закончены уже к 2023 г.
И сейчас у института горячее время, а через год станет еще горячее. К примеру, итоговый вариант экваториального порт-плага, за производство которого взялся ИЯФ, разительно отличался от первоначального. Уже в процессе работы стало очевидно, что придется искать новые материалы и технологии. Так, для работы над проектом в институте освоили технологию глубокого сверления. В классическом варианте вращается деталь, а сверло неподвижно. А для того, чтобы убрать стружку, которая забивает полость сверления, в сквозное отверстие самого сверла пускают охлаждающую жидкость под большим давлением. Но если деталь большая и неподвижная, как в нашем случае, то вращаться должно сверло, и направить жидкость в полость сверления гораздо сложнее. Подобной технологии в ИЯФ не было, поэтому институт купил и модернизировал под свои нужды соответствующее оборудование. Теперь мы можем сверлить на два метра с двух сторон с хорошей точностью.
Одна из особенностей этого материала — тщательно контролируемый химический состав, обеспечивающий нужный уровень примесей и легирующих элементов.
Человечество хорошо освоило расщепление, хотя проблемы пока остаются. Управляемый термоядерный синтез УТС. В термоядерном синтезе используется обратный принцип: вместо расщепления тяжелых элементов соединяются синтезируются легкие — водород и гелий. Точно такие же процессы протекают в центре звезд. Синтез сопровождается выделением огромного количества энергии, но чтобы он осуществился, требуются уникальные условия. Почему же ученые так упорно ищут подходы к УТС, когда у них уже есть атомная энергетика? Потому что у термоядерного синтеза есть главное неоспоримое преимущество — близкая к идеалу теоретическая энергоэффективность. Ключевая сложность — условия , которые требуется создать, чтобы атомы водорода соединились друг с другом.
В ядре Солнца они подвергаются колоссальному давлению вкупе с огромной температурой. Создать такую гравитацию в лабораторных условиях невозможно, поэтому приходится разогревать среду еще сильнее. Так, если в центре нашего светила температура составляет около 15 млн градусов Цельсия, то в термоядерном реакторе — около 150 млн. Разумеется, никакое вещество не способно выдержать подобного жара, поэтому основная задача, над которой сегодня бьются ученые — удержание плазмы как можно дальше от стенок реактора, чтобы они не расплавились.
В меньшей степени это затронет рынок нефти. Газ и нефть в значительной мере потребляются не для сжигания, а для разного рода синтетических процессов. Соответственно, эта часть спроса сохранится.
А вот энергетический уголь пострадает довольно сильно. Но пока стадия, в которой находятся исследования, не позволяет сделать надежных выводов. Если действительно реактор, работающий на ядерном синтезе, удастся технически реализовать, это будет огромный прорыв. Это сильно изменит мировую экономику. Причем очень сильно. Но пока это все-таки относится к области научной фантастики, это достаточно далеко от реальности».