Новости фрактал в природе

Смотрите 51 фото онлайн по теме фракталы в природе фото. Несмотря на то, что фрактальные фигуры были замечены в природе и сконструированы математиками уже довольно давно, впервые научно обосновать существование фракталов смог Бенуа Мандельброт лишь в 1970-х годах. Одним из таких исследований является изучение фракталов в природе.

Открытие первой фрактальной молекулы в природе — математическое чудо

Фрактальные модели в природе и технике Текст научной статьи по специальности «Математика». В природе фрактальные особенности проявляются в таких вещах, как снежинки, молнии или дельты рек. Таких процессов в природе огромное количество, важно просто понимать, что даже довольно простой по своей сути феномен (как описанный выше) зачастую приводит к фрактальным структурам. В ней он впервые заговорил о фрактальной природе нашего многомерного мира. Международная команда исследователей под руководством ученых из Германии обнаружила молекулярный фрактал в цитрат-синтазе цианобактерии, ферменте микроорганизма, который спонтанно собирается в фигуру, известную в математике как «треугольник Серпинского».

ХАОС, ФРАКТАЛЫ И ИНФОРМАЦИЯ

Влияние посторонних источников шума, а также квантовая вероятность в данном случае ни при чем. Хаос порождается собственной динамикой нелинейной системы - ее свойством экспоненциально быстро разводить сколь угодно близкие траектории. В результате форма траекторий очень сильно зависит от начальных условий. Поясним, что это значит, на примере нелинейного колебательного контура, находящегося под воздействием внешнего периодического сигнала. Внесем в нашу систему небольшое возмущение - изменим немного начальный заряд конденсатора. Тогда колебания в возмущенном и невозмущенном контурах, первоначально практически синхронные, очень скоро станут совершенно разными. Поскольку в реальном физическом эксперименте задать начальные условия можно лишь с конечной точностью, предсказать поведение хаотических систем на длительное время невозможно.

Предсказание будущего - Из-за такой малости! Из-за бабочки! Она упала на пол - изящное маленькое создание, способное нарушить равновесие, повалились маленькие костяшки домино... И грянул гром Насколько упорядочена наша жизнь? Предопределены ли в ней те или иные события? Что предсказуемо на многие годы вперед, а что не подлежит сколько-нибудь надежному прогнозированию даже на небольшие интервалы времени?

Человеку постоянно приходится сталкиваться как с упорядоченными, так и с неупорядоченными процессами, порождаемыми различными динамическими системами. Мы знаем, что Солнце встает и заходит каждые 24 часа, и так будет продолжаться в течение всей нашей жизни. Вслед за зимой всегда наступает весна, и вряд ли когда-нибудь будет наоборот. Более или менее регулярно функционируют коммунальные службы, снабжающие нас светом и теплом, учреждения и магазины, а также транспортные системы автобусы, троллейбусы, метро, самолеты, поезда. Нарушения ритмичной работы этих систем вызывают законное возмущение и негодование граждан. Если сбои возникают неоднократно - говорят о хаосе, выражая отрицательное отношение к подобным явлениям.

Но в то же время существуют процессы, хорошо известные своей непредсказуемость ю. Например, подбрасывая монету, мы никогда точно не знаем, что выпадет - "орел" или "решка". Такая непредсказуемость не вызывает тревоги. К гораздо более драматичным последствиям она может привести при игре в рулетку, однако любители испытывать судьбу сознательно идут на этот риск. Почему одни процессы предсказуемы по своим результатам, а другие нет? Может быть, нам просто не хватает каких-то начальных данных для хорошего прогноза?

Надо улучшить знания о начальных условиях - и все будет в порядке, и с монетой и с предсказанием погоды. Сказал же Лаплас: дайте мне начальные условия для всей Вселенной, и я вычислю ее будущее. Лаплас ошибался: ему и его современникам не были известны примеры детерминированных динамических систем, прогноз поведения которых на длительное время нельзя осуществить. Лишь в конце XIX столетия французский математик Анри Пуанкаре впервые почувствовал, что такое возможно. Однако прошло еще три четверти века, прежде чем началась эпоха бурного изучения детерминированного хаоса. Динамические системы можно условно разделить на два типа.

У первых траектории движения устойчивы и не могут быть значительно изменены малыми возмущениями. Такие системы предсказуемы - именно потому мы знаем, что Солнце взойдет завтра, через год и через сто лет. Для определения будущего в этом случае достаточно знать уравнения движения и задать начальные условия. Небольшие изменения в значениях последних приведут лишь к несущественной ошибке в прогнозе. К другому типу относятся динамические системы, поведение которых неустойчиво, так что любые сколь угодно малые возмущения быстро в масштабе времени, характерном для этой системы приводят к кардинальному изменению траектории. Как отметил Пуанкаре в своей работе "Наука и метод" 1908 , в неустойчивых системах "совершен но ничтожная причина, ускользающая от нас по своей малости, вызывает значительное действие, которое мы не можем предусмотреть.

Предсказание становится невозможным, мы имеем перед собой явление случайное". Таким образом прогнозирование на длительные времена теряет всякий смысл. Пример с нелинейным колебательным контуром, рассмотренный выше, показывает, что хаотическое поведение с непредсказуемым будущим может иметь место даже в очень простых системах. Реконструкция прошлого Итак, прогноз будущего не всегда возможен. А как обстоит дело с прошлым? Всегда ли можно реконструировать "предсказать", однозначно истолковать прошлое?

Казалось бы, здесь проблем быть не должно. Раз траектории удаляются одна от другой при движении вперед, они должны сближаться при движении назад. Так оно и есть. Однако направлений, по которым может происходить схождение или расхождение траекторий в фазовом пространстве, не одно, а несколько. При движении как вперед, так и назад траектории могут сближаться по одной части направлений, но расходиться по другой. Прошлое "не предсказывается"?

Бред какой-то! Ведь что-то уже произошло. Все известно... Но давайте подумаем. Если бы с реконструкцией прошлого все было так просто, как тогда могло случиться, что для одних Николай II по-прежнему кровавый, а для других святой? И кто все-таки Сталин: гений или злодей?

Отвлечемся пока от проблемы, насколько вольны они были принимать те или иные решения, насколько эти решения предопределялись обстоятельствами и каковы могли быть последствия альтернативных решений. Рассмотрим исторический процесс как динамику некоторой гипотетической хаотической системы. Тогда при попытке реконструкции прошлого мы столкнемся с быстро увеличивающимся числом вариантов траекторий , отвечающих нынешнему состоянию системы. Только один из них соответствует реальному течению событий. Если выбрать не его, а какой-то другой, то получится уже искаженная "версия" истории. На основании чего выбирается правильная траектория "версия"?

Информация, на которую мы можем опереться, - совокупность имеющихся конкретных фактов. Траектории, несовместимые с ними, отбрасываются. В результате при наличии достаточного количества надежных фактов останется одна траектория, определяющая единственную версию истории. Однако даже для недалекого прошлого траекторий может оказаться значительно больше, чем достоверных сведений, - тогда однозначная трактовка исторического процесса уже не может быть произведена. И все это при добросовестном и уважительном отношении к истории и к фактам. Теперь добавьте сюда пристрастия первичных источников, потерю части информации со временем, манипуляции с фактами на этапе интерпретации замалчивание одних, выпячивание других, фальсификация и др.

И что интереснее всего, при необходимости те же самые интерпретаторы через некоторое время могут без труда утверждать противоположное. Знакомая картина? Итак, динамическая природа "непредсказуемости" прошлого сходна с природой непредсказуемости будущего: неустойчивость траекторий динамической системы и быстрое нарастание числа возможных вариантов по мере удаления от точки отсчета. Чтобы реконстру ировать прошлое, кроме самой динамической системы нужна достаточная по количеству и надежная по качеству информация из этого прошлого. Следует отметить, что на разных участках исторического процесса степень его хаотичности различна и может даже падать до нуля ситуация, когда все существенное предопределено. Естественно, что чем менее хаотична система, тем проще реконструируется ее прошлое.

Управляем ли хаос? Хаос часто порождает жизнь. Адамс На первый взгляд природа хаоса исключает возможность управлять им. В действительности все наоборот: неустойчивость траекторий хаотических систем делает их чрезвычайно чувствительными к управлению. Пусть, например, требуется перевести систему из одного состояния в другое переместить траекторию из одной точки фазового пространства в другую.

По мере своего роста фрактал образует внутри себя треугольные пустоты, что не похоже ни на одну белковую сборку, известную ученым. Это происходит за счет того, что различные белковые цепи в разных положениях осуществляют несколько разные взаимодействия с другими цепями. В результате сборка нарушает симметрию, и обычная регулярная решетка не формируется. Когда группа ученых создала генетически модифицированные бактерии, у которых цитратсинтаза не собирается во фрактальные треугольники, клетки росли так же хорошо, как и в обычных условиях.

В частности, изрезанные береговые линии можно описать с помощью этих фигур, а кочан цветной капусты сорта Романеско, контуры облаков и ветвящаяся форма молний обладают свойством самоподбия. В новой работе физики обнаружили фракталы в лазерах. Как отмечают авторы, лазеры являются практически полной противоположностью природе, так как создаются в максимально приближенных к идеальным условиях: для возникновения когерентного излучения необходим резонатор из безупречно отшлифованных сферических зеркал и усиливающая колебания среда.

В 1998 году было предсказано существование фрактальных распределений в поперечных срезах интенсивности некоторых лазеров, однако экспериментальных подтверждений эффекту не было. В результате эта фигура многократно усиливается при отражениях волн внутри резонатора и проявляется на разных масштабах в получающемся лазерном луче.

К примеру, индуистские храмы обладают схожими друг на друга структурами. В их дизайне некоторые части напоминают концепт в целом. Согласно индуистской космологии, центральная башня зачастую олицетворяет бога Шиву, а подобные меньшие — бесконечные повторы вселенной. Не страшно разгадать глубинные секреты Вселенной?

Дизайн фракталов также имеет схема линий парижского метрополитена, индийская мандала , соборы и храмы и природные объекты. Дизайн повторяющихся фрагментов отражается в общем облике здания и отдельно взятых деталях фасада. Наиболее чаще они встречаются в западной и отечественной архитектурах: исторический музей в Москве, древние индийские и ацтекские ступенчатые храмы, многофункциональный комплекс Federation Square в Мельбурне, мексиканский бутик Liverpool Insurgentes и другие. Фракталы прячутся в простых вещах: цветной капусте, суккулентах, кактусах Их изучение развивает множество сфер: от астрономической, социальной до IT и точных наук Фракталы в IT-сфере и литературе — что общего? Фракталы и их геометрия незаметно перебралась в технологический мир. Из природы он в передовые 3D иллюстрации, компьютерную графику, децентрализованные сети.

К примеру, компания Netsukuku использует принцип фрактального сжатия информации для IP-адресов. Каждый новый узел состыковывается с общей сети без использования центрального сервера. Удобно же! Ты удивишься, но молния, ионосфера, северное сияние и пламя — тоже фракталы Легче всего такие фигуры описать художникам Фракталы используются также в цифровой области. Теперь не нужно отдельно рисовать детали графических объектов. Фракталы и их алгоритмы задают первоначальные параметры, а остальную работу делает компьютерная система.

Айтишники безустанно креативят с двух- и трехмерными геометрическими фигурами для создания объемных текстур. Есть что-то магическое в любой фрактальной форме Одни их замечают, другие проходят мимо В настоящее время математические фракталы активно используются в нанотехнологиях, у трейдеров, экономистов. Они помогают анализировать курс фондовых бирж, торгового рынка. Область нефтехимии применяет фигуры фракталы для создания пористых материалов, а биологии — для развития популяций, генной инженерии. Люди зашли еще дальше, «скрестив» фрактальную геометрию с текстуальной, структурной и семантической природой. Смотри, как каждый фрагмент точно дублируется в уменьшающемся масштабе!

Фракталы в природе: ботаника что-то скрывает Фракталы и их геометрию всегда оберегала природа со своей богатой флорой и фауной.

Впервые в природе обнаружена микроскопическая фрактальная структура

Одна из причин заключается в ее неспособности описать форму облака, горы, дерева или берега моря. Облака - это не сфера, горы - это не конусы, линия берега - это не окружности, и кора не является гладкой, и молния не распространяется по прямой... Природа демонстрирует нам не просто более высокую степень, а совсем другой уровень сложности. Число различных масштабов длин в структурах всегда бесконечно. Существование этих структур бросает нам вызов в виде трудной задачи изучения тех форм, которые Евклид отбросил как бесформенные, - задачи исследования морфологии аморфного. Математики однако, пренебрегли этим вызовом и предпочли все больше и больше отдаляться от природы, изобретая теории, которые не соответствуют ничему из того, что можно увидеть или почувствовать. Если мы описываем увиденное и известное по опыту на языке логики - это наука; если же предоставляем в формах, внутренние взаимосвязи которых недоступны нашему сознанию, но которые интуитивно воспринимаются как осмысленные, - это искусство. И для искусства, и для науки общим является увлечение чем-то стоящим выше личного, свободным от условного. В космическом хаосе, говоря словами Гете, есть "законы, охраняющие сокровища жизни, которыми украшает себя Вселенная". На каждой новой ступени организации материи вступают в силу новые правила.

Это не означает, что известные до сих пор законы природы неверны, но это лишь означает, что трудно обнаружить все скрытое в них. Приведем примеры. Долгосрочный прогноз солнечной системы невозможен уравнения являются неинтегрируемыми. Невозможность осуществления до настоящего времени управляемого термоядерного синтеза связана с тем, что нет адекватного представления о хаотическом движении заряженных частиц в системе магнитных линз. Изучение развития яиц насекомых показывает, что морфогенез невозможно понять только из знания молекулярного строения соответствующего генома. Нелинейные процессы приводят к ветвлению. Система может выбрать ту или иную ветвь, последствия выбора однозначно предсказать невозможно, поскольку для каждого из этих решений характерно усиление отклонений. Хотя в каждый отдельный момент причинная связь сохраняется, но после нескольких ветвлений она уже не видна. Рано или поздно начальная информация о состоянии системы становится бесполезной.

В ходе эволюции генетическая информация генерируется и запоминается. Законы природы допускают множество различных исходов, но наш мир имеет одну единственную историю. Хаос - фундаментальное понятие философии, социологии и естествознания. Оно играло существенную роль уже в мировоззрении философов древности. По их представлениям хаос - состояние материи при отсутствии всех факторов, влияющих на нее и позволяющих выявить ее свойства и структуру. При действии разных факторов из хаоса может рождаться все, что состовляет строение Мироздания, т. Таким образом, Хаос противопоставляется Порядку. Отсюда и представление о хаосе как о беспорядочном движении. В физику понятие хаоса было введено Л.

Больцманом и Дж. В качестве меры хаотичности движения они использовали понятие энтропии. В странном мире хаоса и турбулентности начиная с 70-х г.

Морские раковины Nautilus является одним из наиболее известных примеров фрактала в природе. Прекрасная иллюстрация последовательности Фибоначчи. Молнии ужасают и пугают и одновременно восхищают своей красотой. Фракталы, созданные молнией, не произвольны и не регулярны. Романессу - особый вид брокколи, крестоцветный и вкусный двоюродный брат капусты - является особенно симметричным фракталом. Папоротник является хорошим примером фрактала среди флоры. Каждое соцветие копируется точно таким же только меньше.

Фото сделано снизу, чтобы разглядеть это во всей красе.

Составляющие ее макросистемы конечных размеров могут расширяться и сжиматься, как им вздумается, однако эти локальные процессы сжатия и расширения не могут возобладать друг над другом. Отсюда следует, что если Вселенная фрактальна, то она не переживала Большого взрыва, а наблюдаемое нами космическое расширение является результатом Большого взрыва только нашей Метагалактики. Обсуждая прошлое нашей Метагалактики, можно опираться на идею «отскока», высказанную в научной литературе в отношении Вселенной. Судя по всему, Большому взрыву предшествовало сжатие нашей Метагалактики «до упора», остановившего гравитационный коллапс и обратившего его вспять. С будущим нашей Метагалактики сложнее. Из всех форм физических взаимодействий гравитационное — самое дальнодействующее. Поэтому именно оно глобально доминирует во Вселенной, а также в метагалактиках и других достаточно больших космических системах.

Доминирование же гравитационного взаимодействия в достаточно больших космических системах с ненулевой плотностью, как известно, приводит к их неустойчивости. В устойчивых состояниях могут находиться только не очень большие — по сравнению с метагалактиками — космические системы, в которых существенными наряду с гравитационным оказываются и другие физические взаимодействия. Приходим к выводу, что все рассеянные во Вселенной метагалактики и еще большие системы из-за доминирования в них гравитационного взаимодействия нестационарны. Поскольку же метагалактики могут только расширяться и сжиматься, не достигая устойчивого состояния, то они это циклически и делают. Впрочем, расширение и сжатие метагалактик из-за необратимости этих процессов характеризуются, надо полагать, своего рода остаточной деформацией, которая от цикла к циклу накапливается, пока однажды метагалактики не прерывают свою пульсацию, переходя к бесконечному расширению. Таким образом, при всей своей глобальной стационарности фрактальная Вселенная локально на всем ее протяжении живет бурной жизнью. Составляющие ее метагалактики переживают квазициклические пульсации. Все они имеют свой срок жизни, по истечении которого тают в бесконечном расширении, а их содержимое либо подбирается другими метагалактиками, либо служит материалом для самоорганизации новых.

Эволюция и охлаждение В ходе расширения нашей Метагалактики после ее персонального Большого взрыва она эволюционирует в сторону усложнения. На стадии сжатия все структуры, возникшие в ходе расширения, будут разрушены. Согласно концепции Большого взрыва, в ходе расширения наша Метагалактика вот уже около 13,8 млрд лет охлаждается. Это охлаждение означает глобальное в масштабах метагалактики превращение тепла беспорядочного движения частиц в другие формы энергии. Но энергия — это мера количества взаимодействий материи. Поскольку этот глобальный процесс длится и длится уже миллиарды лет, то он и стимулирует возникновение все более сложных материальных структур. Один однонаправленный процесс — глобальная эволюция материи в сторону усложнения — стимулируется другим однонаправленным процессом — глобальным превращением тепла в другие формы энергии. Сказанное может быть отнесено ко всем метагалактикам и еще бoльшим космическим системам: их материальное содержимое эволюционирует в ходе расширения по всем канонам универсальной эволюции, которых мы коснулись в начале статьи.

Результаты этих локальных эволюций уничтожаются в ходе сжатия этих космических систем. Переходим ко Вселенной. Если бы она глобально расширялась, то в ней происходила бы глобальная эволюция в сторону усложнения, а если бы сжималась, то происходило бы уничтожение всех структур. Невозможность для фрактальной Вселенной глобального сжатия и расширения означает, что она глобально не эволюционирует. Да и как она могла бы глобально эволюционировать, если во время циклических сжатий и расширений составляющих ее метагалактик все результаты локальных эволюций обнуляются? Все опять и опять повторится сначала Как говорилось выше, жизнь возникает в ходе эволюции везде, где это позволяют условия. В нашей Солнечной системе только восемь планет, и высокоорганизованная жизнь возникла на одной из них. В галактиках намного более разнообразные условия, так что вероятность возникновения жизни в каждой из них много больше.

Ну а в метагалактиках вероятность возникновения жизни, надо полагать, и вовсе близка к единице. Возникая на очередной стадии расширения метагалактики с подходящими параметрами, жизнь каждый раз начинает с чистого листа, ничего не зная о своих предшественниках, и бесследно исчезает при ее метагалактики сжатии.

Фигуры компактного размера обладают широким диапазоном действий. Алгебраические фракталы. Он базируется на математических формулах, например, Мандельброта. Фигуры строятся с помощью комплексной динамики. Эти фигуры создают методом хаотичного изменения параметров, применяют дизайне, художестве. Изображения получаются природными, абстрактными. Такие фигуры нашли популярность в кинематографе, компьютерной графике, нейрографике дизайне при создании эффекта «плазмы» природы: молний, пламени, северного сияния, береговой линии и даже ионосферы. Концептуальные фракталы и их дизайн.

А эти фигуры уже выходят за рамки геометрии. Многоуровневое самоподобие ищи в стихах, музыке, изобразительном искусстве. Сказка «Репка», где «бабка за дедку, внучка за бабку, а Жучка за внучку» — яркий тому пример. Внепространственные фракталы также применяются в разделении общества на группы, организации поселений, социокультурной сфере. Фрактал — это бесконечная цепочка самопостроения Первые изображения найдены на керамике Трипольской культуры 2700 год. Гипнотические фигуры в природе и науке преображают хаос, создают матрицу. Они перестают быть синонимами беспорядка, обретая тонкую и четкую структуру. Фракталы выстраивают свой дизайн посредством простых алгоритмов. Математика, современные технологии, дизайн, экономика и другие сферы давно обратили внимание на подобные закономерности. Фрактал упорядочивает хаос Картины с изображением фракталов способствуют глубокой медитации От общего к частному: из природы в архитектуру Архитектура обожает прием совершенной геометрии.

К примеру, индуистские храмы обладают схожими друг на друга структурами. В их дизайне некоторые части напоминают концепт в целом. Согласно индуистской космологии, центральная башня зачастую олицетворяет бога Шиву, а подобные меньшие — бесконечные повторы вселенной. Не страшно разгадать глубинные секреты Вселенной? Дизайн фракталов также имеет схема линий парижского метрополитена, индийская мандала , соборы и храмы и природные объекты.

Бесконечность фракталов. Как устроен мир вокруг нас

Мандельброт решает этот парадокс удивительным образом — он заявляет, что нельзя говорить о таком понятии, как «длина береговой линии», в привычном нам понимании. Чтобы доказать свое утверждение, он вводит ключевое для теории фракталов понятие фрактальной размерности. Самое странное в ней то, что она не является целой! В математике размерностью обычно называют топологическую размерность, которая просто-напросто соответствует количеству измерений предмета. Так, куб имеет три измерения — длину, ширину и высоту, следовательно, его размерность равна трем. А линия на бумаге имеет только длину, и ее размерность равна единице.

Поэтому на первый взгляд кажется невозможным представить предмет с нецелой размерностью. Какой объект может иметь размерность 1,26? А ведь его описали еще в 1904 году и более полувека попросту не обращали на него внимания, считая забавной игрушкой. Это снежинка Коха, представляющая собой замкнутую кривую с простейшим алгоритмом построения, из которого ясно, что ее длина в привычном нам понимании бесконечна. Математики ввели для такой нецелой размерности отдельный термин — размерность Хаусдорфа-Безиковича.

Также можно заметить схожесть этой снежинки с изрезанной береговой линией — каждый ее фрагмент в крупном масштабе подобен ее же более мелкому фрагменту. Это свойство называется самоподобием — оно ключевое для всех фракталов. Из аналогии с береговой линией мы можем получить интуитивное понимание нецелой размерности — ее можно описать как «степень изрезанности кривой». Губка Менгера. Иллюстрация: Niabot, www.

Наиболее общее, предложенное Мандельбротом, гласит, что фракталом называют структуру, состоящую из частей, которые в каком-то смысле подобны целому. При этом фрактал не обязательно должен быть кривой, как в предыдущих примерах, — это может быть как плоская, так и объемная фигура. Например, фракталами являются ковер Серпинского или губка Менгера. Само слово фрактал Мандельброт придумал на основе латинского fractus, означающего «сломанный» и созвучного английскому fraction — «дробь». Это слово одновременно отображает как необычность, извилистость фракталов, так и их свойства, связанные с их дробной размерностью.

Одинокий ученый Развитие теории фракталов тесно связано с ее основателем, Бенуа Мандельбротом — в одиночку он долгое время отстаивал и доказывал свою идею всему научному сообществу. Поэтому история открытия фракталов — в значительной степени биография Бенуа Мандельброта, хотя частные случаи фракталов множества Жюлиа, снежинка Коха и функция Вейерштрасса были известны и раньше. Но только Мандельброт увидел что-то общее в этих примерах и дал им описание. Бенуа Мандельброт.

Пусть образующим элементом будут два равных отрезка, соединенных под прямым углом. В нулевом поколении заменим единичный отрезок на этот образующий элемент так, чтобы угол был сверху. Можно сказать, что при такой замене происходит смещение середины звена.

При построении следующих поколений выполняется правило: самое первое слева звено заменяется на образующий элемент так, чтобы середина звена смещалась влево от направления движения, а при замене следующих звеньев, направления смещения середин отрезков должны чередоваться. Предельная фрактальная кривая при n стремящемся к бесконечности называется драконом Хартера-Хейтуэя. Построение "дракона" Хартера-Хейтуэя Для построения треугольника Серпинского начальный элемент — треугольник со всеми внутренними точками. Образующий элемент исключает из него центральный треугольник. Фрактальное множество получается в пределе при бесконечно большом числе. Построение треугольника Серпинского Представленные примеры геометрических фракталов не являются единственными, существует огромное количество других, еще более сложных и интересных фракталов. Геометрические фракталы имеют огромное практическое значение.

Применяя их в компьютерной графике, ученые научились получать сложные объекты, похожие на природные: изображения снежинок, горных вершин, искусственных облаков, деревьев, кустов, веток, береговой линии и так далее. Двухмерные геометрические фракталы используются для создания объемных текстур. Алгебраические фракталы Эти фракталы могут быть описаны с помощью алгебраических уравнений или рекурсивных формул. Эти уравнения и формулы определяют правила, по которым точки или фигуры повторяются и изменяются на каждой итерации. Алгебраические фракталы могут иметь сложную и красивую геометрию, которая может быть воспроизведена и визуализирована с помощью компьютерной графики. Они могут быть двухмерными или трехмерными, и их формы могут быть симметричными или случайными. Алгебраические фракталы имеют множество применений в различных областях, включая компьютерную графику, науку, искусство и дизайн.

Они могут быть использованы для создания красивых и сложных изображений, моделирования природных явлений, анализа данных и многого другого. Почему мнимой? Комплексные числа можно складывать, вычитать, умножать, делить, возводить в степень и извлекать корень, нельзя только их сравнивать. Комплексное число можно изобразить как точку на плоскости, у которой координата х - это действительная часть a, а y - это коэффициент при мнимой части b. Расчет данной функции продолжается до выполнения определенного условия. И когда это условие выполнится - на экран выводится точка определенного цвета. Результатом оказывается странная фигура, в которой прямые линии переходят в кривые, появляются, хотя и не без деформаций, эффекты самоподобия на различных масштабных уровнях.

При этом вся картина в целом является непредсказуемой и очень хаотичной.

Такой фрактальный дизайн, подобно спирали суккулентов, помогает деревьям оптимизировать воздействие солнечного света и не позволяет верхним ветвям затенять нижние. Это явление мастерски продемонстрировано на примере кристаллов меди, которые разветвляются во всех направлениях, как ветви дерева. Каждая «веточка» является новой точкой роста — по мере разветвления она превращается в твердую металлическую медь. Из-за своей древовидной природы и уникального красновато-коричневого цвета кристаллы меди часто выращивают для искусства.

Хотя иногда ручьи могут быть расположены по прямой линии, они быстро становятся извилистыми, поскольку приспосабливаются к помехам, таким как норы диких животных. Всего одна помеха может изменить течение реки и заставить ее изгибаться на всем протяжении. Ширина этих ручьев также чрезвычайно шаблонна. Кривые, как установили эксперты, всегда в шесть раз больше ширины русла. Такое самоподобие характерно для фракталов и является причиной того, что реки во всем мире выглядят одинаково.

Если вы внимательно посмотрите на прожилки листьев, то заметите, насколько они самоподобны.

Его ввел математик Бенуа Мандельбротом в 1975 году, изучая сложные структуры, состоящие из частей, подобных целому. Мандельброт указал, что свойство самоподобия кардинально отличает эти фигуры от других объектов точной науки и трудно укладывается сознании. Совершенный дизайн фигур обладает рядом свойств: сложные, постоянно повторяющиеся структуры основной фигуры геометрии круга, треугольника, квадрата увеличение масштаба фигуры всегда приводит к усложнению его структуры принцип дизайна фигуры — самоподобие, приближенное самоподобие или рекурсия метрическая размеренность даже при дроблении фигуры значительно превосходит топологическую фигуры фракталы не имеют конечной площади в графическом изложении, напоминают матрицу.

Схожие фрактальные формы встречаются повсюду, от микро- до макромира Ищи фракталы в минералах, флоре и фауне, природных явлениях Фракталы в природе, науке, дизайне, it-сфере и даже философии — это яркий пример вечного непрерывного движения, становления и развития простых форм. Фракталы становятся причиной встречающихся нам закономерностей. О том, что человечество использовало такие фигуры много веков назад, ни история, ни архитектура, ни изобразительное искусство не умалчивают. Трипольская культура, Древний Египет, календарь Майя , восточные узоры мандалы — все это принадлежит к сакральной геометрии.

Мандала со своей фрактальной структурой излучает гармонию Одежда с фрактальным кроем или принтами становится все более популярной Фракталы — дизайн космической фигуры Колоссальные фрактальные сооружения с четкими математическими пропорциями строились во времена Имхотепа, египетского фараона. Позже геометрию и дизайн фигуры перенял готический стиль Европы. Последнему даже удалось превратить собственное имя в бесконечные фракталы — Benoit B. Секрет — в расшифровке сокращения «B» Benoit B.

Геометрия и фракталы. Бесконечные фигуры часто используются в дизайне, художественном искусстве, архитектуре. Снежинка Коха, Треугольник Серпинского, Кривая Леви, Дерево Пифагора и другие нашли применение в области фрактальных антенн для мобильных устройств. Фигуры компактного размера обладают широким диапазоном действий.

Алгебраические фракталы. Он базируется на математических формулах, например, Мандельброта. Фигуры строятся с помощью комплексной динамики. Эти фигуры создают методом хаотичного изменения параметров, применяют дизайне, художестве.

Изображения получаются природными, абстрактными. Такие фигуры нашли популярность в кинематографе, компьютерной графике, нейрографике дизайне при создании эффекта «плазмы» природы: молний, пламени, северного сияния, береговой линии и даже ионосферы. Концептуальные фракталы и их дизайн. А эти фигуры уже выходят за рамки геометрии.

Фрактал. 5 вопросов

Это значит, что плоский фрактал в некотором смысле «проще» настоящей плоскости, но «сложнее» прямой. Фракталы также встречаются в природе. Термин «фрактал» был введён Бенуа Мандельбротом в 1975 году и получил широкую популярность с выходом в 1977 году его книги «Фрактальная геометрия природы». Да, в физической Природе не существуют ни идеальный газ, ни континуальная материя, ни фрактальные объекты с «действительно бесконечной» лестницей иерархических этажей. Смотрите 51 фото онлайн по теме фракталы в природе фото. Геометрия природы» пользователя Мария Иванова в Pinterest. Посмотрите больше идей на темы «фракталы, фрактальное искусство, природа».

Бесконечность фракталов. Как устроен мир вокруг нас

При каждой итерации количество её копий увеличивается в четыре раза, а рисунок становится сложнее: Изображение: Лев Сергеев для Skillbox Media Треугольник же на каждом шаге дробится на три равные части: Изображение: Лев Сергеев для Skillbox Media Квадрат, или ковёр, Серпинского получается так же, как и треугольник, но исходная фигура делится на восемь квадратов. Ковёр Серпинского в трёхмерном пространстве превратится в кубический многогранник. По такому же принципу можно смоделировать и трёхмерный треугольник Серпинского. В её основе лежит знаменитая теорема Пифагора, согласно которой сумма квадратов катетов равна квадрату гипотенузы. Полученный геометрический фрактал напоминает дерево, поэтому его и назвали деревом Пифагора. Изображение: Лев Сергеев для Skillbox Media Знакомым с алгоритмами читателям дерево Пифагора может напомнить другое, бинарное дерево. В целом, бинарный поиск напоминает принцип Кантора, где на каждой итерации получается вдвое больше разветвлений отрезков. Всё это — ещё одна иллюстрация самоподобия, о котором мы говорили ранее.

Алгебраические фракталы Алгебраические фракталы, в отличие от геометрических, основываются на формуле, а не на фигурах, но также рекурсивно итерируются. Выглядят они ещё более причудливо, чем те, что мы рассмотрели выше. Остановимся на комплексных числах. Вы наверняка знаете, что извлекать квадратный корень из отрицательных чисел нельзя — это следует из того, что любое отрицательное число в квадрате является положительным. Логика железная и справедливая, но лишь для действительных чисел. Вот здесь-то и ломается привычная арифметика. Нас ведь с пятого класса учили, что из отрицательных чисел квадратный корень не извлечь», — скажете вы и будете правы!

Да, такая запись на первый взгляд кажется парадоксальной, и многие математики на первых порах с подозрением относились к подобной «магии». Но именно она в XVI веке помогла решить некоторые проблемные кубические уравнения. А потом комплексные числа нашли применение и в других областях, например в тригонометрии. Возвращаемся к нашему Мандельброту. Небольшая шпаргалка, чтобы напомнить, о чём шла речь: Изображение: Лев Сергеев для Skillbox Media Суть фрактала Мандельброта та же, что и у предыдущих: на каждой новой итерации мы используем значение функции из предыдущего шага. В результате получаются невероятные картины!

Фибоначчи привел несуществующий биологический пример численного роста теоретической популяции кроликов. В 1917 году Дарси Томпсон 1860—1948 опубликовал свою книгу «О росте и форме». Его описание взаимосвязи филлотаксиса расположения листьев на стебле растения и чисел Фибоначчи математическое отношение закономерностей спирального роста в растениях стало классическим. Он показал, что простые уравнения могут описать все с виду сложные закономерности спирального роста рогов животных и раковин моллюсков. Тюринг, Плато, Геккель, Цейзинг — знаменитые деятели искусства и науки — искали строгие законы математики и находили ее в красоте природы. Спираль Фибоначчи — геометрическая прогрессия красоты Спирали распространены среди растений и некоторых животных, особенно среди моллюсков. Например, у моллюсков-наутилид каждая ячейка их раковины — примерная копия следующей, масштабированная константой и выложенная в логарифмическую спираль. Чаще всего в природе встречается последовательность Фибоначчи. Она начинается с чисел 1 и 1, а затем каждое последующее число получается путем сложения двух предыдущих чисел. Спирали в растениях наблюдаются в расположении листьев на стебле, а также в структуре бутона и семян цветка — например, у подсолнуха или структуры плода ананаса и салака. Последовательность Фибоначчи можно заметить и у сосновой шишки, где огромное количество спиралей расположено по часовой и против часовой стрелки. Эти механизмы объясняются по-разному — математикой, физикой, химией, биологией. Каждое из объяснений верно само по себе, но необходимо учитывать их все. С точки зрения физики, спирали — конфигураций низких энергий, которые возникают спонтанно путем самоорганизации процессов в динамических системах. С точки зрения химии, спираль может быть образована реакционно-диффузионным процессом с привлечением как активации, так и ингибирования. Филлотаксис контролируется протеинами, которые управляют концентрацией растительного гормона ауксина, который активирует рост среднего стебля наряду с другими механизмами контроля относительного угла расположения бутона к стеблю. С точки зрения биологии листья расположены настолько далеко друг от друга, насколько позволяет естественный отбор, так как он максимизирует доступ к ресурсам, особенно к солнечному свету, для фотосинтеза.

Он создается путем итеративного применения простой математической формулы к каждой точке на комплексной плоскости. Результатом является изображение, которое состоит из бесконечного количества деталей и самоподобных структур. Фрактал Жюлиа — это еще один пример алгебраического фрактала, который создается с помощью итеративного применения формулы к каждой точке на комплексной плоскости. Он имеет разнообразные формы и структуры, которые зависят от выбранной формулы и параметров. Бассейны Ньютона также являются примерами алгебраических фракталов. Области с фрактальными границами появляются при приближенном нахождении корней нелинейного уравнения алгоритмом Ньютона на комплексной плоскости для функции действительной переменной метод Ньютона называют методом касательных, который обобщается для комплексной плоскости. Алгебраические фракталы обладают приближенной самоподобностью. Фактически, если вы увеличите маленькую область любого сложного фрактала, а затем проделаете то же самое с маленьким участком этой области, то эти два увеличения будут значительно отличаться друг от друга. Два изображения будут очень похожи в деталях, но они не будут полностью идентичными. Фракталы, при построении которых в итеративной системе случайным образом изменяются какие-либо параметры, называются стохастическими. Типичный представитель данного класса фракталов — «плазма». Для ее построения возьмем прямоугольник и для каждого его угла определим цвет. Далее находим центральную точку прямоугольника и раскрашиваем ее в цвет равный среднему арифметическому цветов по углам прямоугольника плюс некоторое случайное число. Чем больше случайное число - тем более «рваным» будет рисунок. Стохастическим природным процессом является броуновское движение. С помощью компьютера такие процессы строить достаточно просто: надо просто задать последовательности случайных чисел и настроить соответствующий алгоритм. Двумерные стохастические фракталы используются при моделировании рельефа местности и поверхности моря, процесса электролиза. При этом получаются объекты, очень похожие на природные — несимметричные деревья, изрезанные береговые линии и так далее. С помощью алгоритма, похожего на плазму строится карта высот. Плазма Практическая часть исследовательской работы Как программировать фракталы? Изучив фракталы в теории, мне стало интересно, как это работает на практике? Я решил начать построение простых геометрических фракталов с помощью языка программирования Лого. Черепашья графика позволяет наглядно представить геометрические фракталы. Мне удалось сделать такие общеизвестные фракталы, как треугольник Серпинского, ковёр Серпинского, снежинка Коха, а также придумать свой собственный фрактал, работающий по аналогичному алгоритму - "Плюсы". Результаты моей работы в виде графических изображений серии картинок с усложнением после каждой итерации и алгоритмов представлены ниже.

Примеров фракталов можно привести массу, потому что, они окружают нас повсюду. Самыми интересными, простыми и популярными фрактальными свойствами в природе обладают — кроны деревьев, цветная капуста, облака, кровеносная система человека и животных, кристаллы, снежинки, горные хребты, берега рек, морозные узоры на стекле, многие растения и морские раковины… Галактика и Вселенные тоже фракталы и обладают свойством самоподобия. Вселенная складывается, как матрёшка, и все её составные части выглядят примерно так же. Человек — это фрактал Вселенной — микрокосмос, разумная клетка Вселенной, которая способна включиться в активную работу, используя свои уникальные данные, записанные во фрактальной структуре человеческой ДНК. Всё, что окружает нас, ближний и дальний Космос, являются фракталом. Мы с вами тоже. Бесконечное самоподобие.

Исследовательская работа: «Фракталы в нашей жизни».

Смотрите 51 фото онлайн по теме фракталы в природе фото. Приводим примеры фракталов в природе, жизни, математике, алгебре, геометрии и не только. Чтобы доказать свое утверждение, он вводит ключевое для теории фракталов понятие фрактальной размерности. Понятие ФРАКТАЛЫ (fractus -состоящий из фрагментов) введено в научный обиход Бенуа Мандельбротом. Фракталы часто встречаются в природе. Если изучить фрактальную геометрию природы, то наблюдая природные явления человек перестанет видеть хаос. Он увидит, насколько просты принципы развития и распределения в природе.

Похожие новости:

Оцените статью
Добавить комментарий