Новости теория суперсимметрии

SIS’23 привлекло ведущих специалистов в квантовой теории поля и современной математической физики. му же, в этом случае у нас исчезают расходимости в первом порядке теории возмущений, что тоже является одним из плюсов суперсимметрии. Абстрактное преобразование суперсимметрии связывает бозонное и фермионное квантовые поля, так что они могут превращаться друг в друга.

«В настоящее время мы не можем описать Вселенную»

Важное предсказание суперсимметрии – существование суперрасширения теории гравитации, супергравитации, и суперсимметричного партнера гравитона – гравитино, частицы со спином 3/2. Теория предсказывает наличие закона периодического изменения вероятности обнаружения частицы определённого сорта в зависимости от прошедшего с момента создания частицы. Важные результаты в изучении низкоэнергетических следствий теории суперструн методами суперсимметричной теории поля получила в ходе цикла работ группа теоретиков из ОИЯИ. Знаменитая теория Суперсимметрии, объясняющая основы мироздания, не нашла подтверждения в ходе исследований в Европейском центре ядерных исследований (ЦЕРН). Теория суперсимметрии обобщает часто встречающееся в природе явление симметрии на уровень элементарных частиц и утверждает, что существует некоторое преобразование.

С теорией суперсимметрии придётся расстаться

Одним из преимуществ суперсимметрии является то, что она значительно упрощает уравнения, позволяя исключить некоторые переменные. Теория суперсимметрии выдвигалась многими физиками-теоретиками в качестве средства объяснения некоторых несоответствий в Стандартной модели Вселенной. На днях теория суперсимметрии получила еще один удар от Большого адронного коллайдера (БАК). SIS’23 привлекло ведущих специалистов в квантовой теории поля и современной математической физики.

Суперсимметрия не подтверждается экспериментами, и физики ищут новые идеи

Одна из задач, которую ученые пытаются решить с помощью БАК, – это получение экспериментального подтверждения теории Суперсимметрии. Суперсимметрия дает способ объединить электрослабое и сильные взаимодействия и в конечном счете создать единую теорию поля. Супервремя — понятие, возникшее как «игрушечная модель» в суперсимметричной теории поля — одномерный слепок суперпространства.

СУПЕРСИММЕ́ТРИ́Я

Так идет до тех пор, пока не появится легчайшая суперсимметричная частица в зависимости от варианта теории, это может быть нейтралино, гравитино или другие суперчастицы. Главное, что она уже ни на что не распадается, а просто улетает прочь, не будучи даже пойманной детектором. Эта частица уносит большой поперечный импульс, который — в силу неуловимости частицы — не отслеживается детектором. Детектор регистрирует все обычные частицы, измеряет их импульсы и видит, что они не складываются в нуль, то есть заметная часть импульса «теряется». Такой дисбаланс в поперечном импульсе указывает на то, что в столкновении родилась какая-то неуловимая частица высокой энергии. Конечно, одного лишь дисбаланса поперечного импульса мало для открытия Новой физики. В Стандартной модели тоже есть частицы, не регистрируемые детектором, — нейтрино, — и они запросто могут породить похожую картину столкновений. Вдобавок, детекторы неидеальны, и иногда они ошибаются при измерении энергий и импульсов особенно когда приходится мерять адронные струи , целые потоки адронов или даже могут неправильно идентифицировать пролетевшую частицу.

Поэтому в реальности физикам приходится тщательно сравнивать полученные данные с предсказаниями Стандартной модели и пытаться найти не просто какую-то статистику событий, а их превышение над фоном Стандартной модели. Так что каждый поиск, каждый анализ — это кропотливая работа десятков и сотен исследователей в течение месяцев или даже лет. Более подробный рассказ о том, как изучают частицы на коллайдере, читайте в статье Анатомия одной новости. Сейчас, в преддверии нового запуска LHC, экспериментальные группы «подчищают хвосты» — доделывают трудоемкие анализы на основе данных, набранных во время первых трех лет работы коллайдера. Регулярно появляются и статьи о тех или иных поисках суперсимметрии, но все они пока приводят к отрицательным результатам. Однако за последний месяц обе крупнейшие коллаборации, работающие на LHC, сообщили о наблюдении любопытных отклонений в похожих — но не идентичных! В обеих работах физики изучали события следующего типа: наблюдаются как минимум две адронные струи, лептонная пара электрон-позитрон или мюон-антимюон и потерянный поперечный импульс.

На рис. Конечно, существуют и обычные фоновые процессы, которые дают такой же сигнал. Например, в столкновении протонов может просто родиться Z-бозон, который распадется на лептонную пару, а уж адроны всегда рождаются в избытке. Если детектор неправильно сосчитает энергию адронных струй, вполне может появиться дисбаланс поперечного импульса. Однако в этом случае дисбаланс будет небольшим, порядка десятков ГэВ. Есть и другие источники фона, но все их физики аккуратно учли. Два примера событий с рождением и распадом суперсимметричных частиц.

Частицы Стандартной модели показаны темным цветом, гипотетические суперсимметричные частицы — красным. В обоих вариантах легчайшая суперсимметричная частица считается стабильной. Она улетает, не оставляя след в детекторе, и приводит к дисбалансу поперечного импульса, который детектор измеряет. Два типа процесса отличаются тем, как рождаются лептоны, — независимо вверху или резонансно внизу. В детекторе они будут сильно отличаться по распределению инвариантной массы лептонной пары Два типа сигналов, показанные на рис.

Квантовая физика изучает мельчайшие природные частицы, а ОТО, как правило, описывает природу в масштабах планет, галактик и вселенной в целом. Гипотезы, которые пытаются объединить их, называются теориями квантовой гравитации. Наиболее перспективной из них сегодня является струнная. Замкнутые нити соответствуют поведению силы тяжести. В частности, они обладают свойствами гравитона, частицы, переносящей гравитацию между объектами. Объединение сил Теория струн пытается объединить четыре силы — электромагнитную, сильные и слабые ядерные взаимодействия, и гравитацию — в одну. В нашем мире они проявляют себя как четыре различные явления, но струнные теоретики считают, что в ранней Вселенной, когда были невероятно высокие уровни энергии, все эти силы описываются струнами, взаимодействующими друг с другом. Суперсимметрия Все частицы во вселенной можно разделить на два типа: бозоны и фермионы. Теория струн предсказывает, что между ними существует связь, называемая суперсимметрией. При суперсимметрии для каждого бозона должен существовать фермион и для каждого фермиона — бозон. К сожалению, экспериментально существование таких частиц не подтверждено. Суперсимметрия является математической зависимостью между элементами физических уравнений. Она была обнаружена в другой области физики, а ее применение привело к переименованию в теорию суперсимметричных струн или теория суперструн, популярным языком в середине 1970 годов. Одним из преимуществ суперсимметрии является то, что она значительно упрощает уравнения, позволяя исключить некоторые переменные. Без суперсимметрии уравнения приводят к физическим противоречиям, таким как бесконечные значения и воображаемые энергетические уровни. Поскольку ученые не наблюдали частицы, предсказанные суперсимметрией, она все еще является гипотезой. Эти частицы могли существовать в ранней вселенной, но так как она остыла, и после Большого взрыва энергия распространилась, эти частицы перешли на низкоэнергетические уровни. Другими словами, струны, вибрировавшие как высокоэнергетические частицы, утратили энергию, что превратило их в элементы с более низкой вибрацией. Ученые надеются, что астрономические наблюдения или эксперименты с ускорителями частиц подтвердят теорию, выявив некоторые из суперсимметричных элементов с более высокой энергией. Дополнительные измерения Другим математическим следствием теории струн является то, что она имеет смысл в мире, число измерений которого больше трех. В настоящее время этому существует два объяснения: Дополнительные измерения шесть из них свернулись, или, в терминологии теории струн, компактифицировались до невероятно малых размеров, воспринять которые никогда не удастся. Мы застряли в 3-мерной бране, а другие измерения простираются вне ее и для нас недоступны. Важным направлением исследований среди теоретиков является математическое моделирование того, как эти дополнительные координаты могут быть связаны с нашими. Последние результаты предсказывают, что ученые в скором времени смогут обнаружить эти дополнительные измерения если они существуют в предстоящих экспериментах, так как они могут быть больше, чем ожидалось ранее. Понимание цели Цель, к которой стремятся ученые, исследуя суперструны — «теория всего», т. В случае успеха она могла бы прояснить многие вопросы строения нашей вселенной. Объяснение материи и массы Одна из основных задач современных исследований — поиск решения для реальных частиц. Теория струн начиналась как концепция, описывающая такие частицы, как адроны, различными высшими колебательными состояниями струны.

Согласно этой гипотезе, так как ранняя вселенная остыла после большого взрыва, это единое взаимодействие стало распадаться на разные, действующие сегодня. Эксперименты с высокими энергиями когда-нибудь позволят нам обнаружить объединение этих сил, хотя такие опыты находятся далеко за пределами текущего развития технологии. Пять вариантов После суперструнной революции 1984 г. Физики, перебирая версии теории струн в надежде найти универсальную истинную формулу, создали 5 разных самодостаточных варианта. Какие-то их свойства отражали физическую реальность мира, другие не соответствовали действительности. М-теория На конференции в 1995 году физик Эдвард Виттен предложил смелое решение проблемы пяти гипотез. Основываясь на недавно обнаруженой дуальности, все они стали частными случаями единой всеобъемлющей концепции, названной Виттеном М-теория суперструн. Одним из ключевых ее понятий стали браны сокращение от мембраны , фундаментальные объекты, обладающие более чем 1 измерением. Хотя автор не предложил полную версию, которой нет до сих пор, М-теория суперструн кратко состоит из таких черт: 11-мерность 10 пространственных плюс 1 временное измерение ; двойственности, которые приводят к пяти теориям, объясняющих ту же физическую реальность; браны — струны, с более чем 1 измерением. Следствия В результате вместо одного возникло 10500 решений. Для некоторых физиков это стало причиной кризиса, другие же приняли антропный принцип, объясняющий свойства вселенной нашим присутствием в ней. Остается ожидать, когда теоретики найдут другой способ ориентирования в теории суперструн. Некоторые интерпретации говорят о том, что наш мир не единственный. Наиболее радикальные версии позволяют существование бесконечного числа вселенных, некоторые из которых содержат точные копии нашей. Теория Эйнштейна предсказывает существование свернутого пространства, которое называют червоточиной или мостом Эйнштейна-Розена. В этом случае два отдаленных участка связаны коротким проходом. Теория суперструн позволяет не только это, но и соединение отдаленных точек параллельных миров. Возможен даже переход между вселенными с разными законами физики. Однако вероятен вариант, когда квантовая теория гравитации сделает их существование невозможным. Многие физики считают, что голографический принцип, когда вся информация, содержащаяся в объеме пространства, соответствует информации, записанной на его поверхности, позволит глубже понять концепцию энергетических нитей. Некоторые полагают, что теория суперструн позволяет множественность измерений времени, следствием чего может быть путешествие через них. Кроме того, в рамках гипотезы существует альтернатива модели большого взрыва, согласно которой наша вселенная появилась в результате столкновения двух бран и проходит через повторяющиеся циклы создания и разрушения. Конечная судьба мироздания всегда занимала физиков, и окончательная версия теории струн поможет определить плотность материи и космологическую константу. Зная эти значения, космологи смогут установить, будет ли вселенная сжиматься до тех пор, пока не взорвется, чтобы все началось снова. Никто не знает, к чему может привести научная теория, пока она не будет разработана и проверена. Создатели квантовой физики не знали, что она станет основой для создания лазера и транзистора. И хотя сейчас еще не известно, к чему приведет такая сугубо теоретическая концепция, история свидетельствует о том, что наверняка получится что-то выдающееся. Подробнее об этой гипотезе можно прочесть в книге Эндрю Циммермана «Теория суперструн для чайников».

Сатклифф вошел в крупный международный коллектив ученых, которые наблюдали за поведением кварков, субатомных частиц, составляющих протоны и нейтроны. Есть шесть разных типов кварков: верхний, нижний, очарованный, странный, прелестный и истинный. Ученые особенно наблюдали за прелестным кварком, который тяжелее и способен менять форму. Прелестный кварк обычно переходит в очарованный кварк, но в редких случаях может превращаться и в верхний кварк. Это могло стать расширением для Стандартной модели, — объясняет Сатклифф. В выводах, опубликованных в журнале Nature Physics, измерения не показали никакого правостороннего вращения.

Физик Эмиль Ахмедов о рядах Тейлора, березиновских координатах и свойствах полей фермионов

  • Адронный коллайдер подтвердил теорию суперсимметрии
  • Категории статьи
  • "Теория проигрывает эксперименту": новый кризис в физике высоких энергий?
  • Суперсимметрия - Supersymmetry -
  • Нобелевская премия по физике 2008 года. Нобелевская асимметрия

Откройте свой Мир!

Возникли новые методы, в которых было очень много красивой математики, но не так уж много физического содержания. Но уже через десять лет в рамках старого, уже, казалось бы, похороненного подхода, появилась теория сильных взаимодействий, квантовая хромодинамика, и Стандартная модель, появились соответствующие предсказания, которые затем были блестяще подтверждены в новых экспериментах. Последнее из этих подтверждений — обнаружение хиггсовского бозона, это, так сказать, теоретический привет из шестидесятых. Само по себе это нормально, но вопрос о том, сменится ли эта фаза реальным прогрессом в понимании природы, остается, на мой взгляд, открытым. Прошлые успехи не гарантируют успеха в будущем. Кроме того, сейчас имеется серьезная объективная трудность: в отличие от 1950-х годов, у нас сейчас не так много экспериментальных данных. Вот если бы БАК или другой ускоритель нашли бы "новую физику", тогда дело бы пошло веселей. А так, в основном, мы имеем только косвенные подтверждения, что новая физика есть. По сути, мы сейчас идем за экспериментами — мы строим коллайдер, он, к счастью, находит бозон Хиггса, но не открывает микро-черные дыры или какие-то другие новые и интересные объекты, вроде суперпартнеров.

Теоретики задыхаются от недостатка новых данных и у них, образно говоря, начинаются разнообразные сугубо математические галлюцинации… И это все при том, что острые нерешенные вопросы еще у нас есть. Мне, теоретику, ситуация, в которой теория становится ведомой, совсем не по душе. Мне кажется, что вопрос "нужно ли идти дальше? Я верю в то, что тяга к фундаментальному знанию будет существовать до тех пор, пока существует человечество. Не думаю, что апокалиптическая картина "общества всеобщего потребления", которую нам часто рисуют футуристы, будет воплощена в жизнь до такой степени, что фундаментальная наука станет никому не нужна и ее полностью прекратят финансировать. С другой стороны, есть немало примеров саморазрушительной динамики на уровне индивидуумов и сообществ, поэтому гарантий тут нет. Что касается чисто технической стороны, то в последнее время большое внимание уделяется разработке новых принципов ускорения частиц. Если прогресс в этом направлении будет достигнут, вовсе необязательно строить ускоритель размером с половину континента.

В любом случае, пока экспериментаторы ведут в изучении физики частиц, мы будем двигаться в этом направлении. Бозон Хиггса - недостающее звено Стандартной модели За пределами Стандартной модели сейчас находится своеобразная "полоса незнания", побуждающая экспериментаторов строить новые машины и копаться в ней. Это копание проявляется в двух вещах — мы сталкиваем частицы на все более высоких энергиях, надеясь найти что-то новое, и более точно промеряем параметры их взаимодействий. Это тоже очень большая работа, которая, может быть, не принесет каких-то громких фундаментальных открытий, но крайне важна для понимания общей картины устройства мироздания. Иными словами, я пока не готов окончательно хоронить ни экспериментальную, ни теоретическую физику высоких энергий. При этом меня очень раздражает то, что мы уже несколько десятилетий топчемся на одном месте и так и не можем сформулировать убедительного обобщения всего, что было открыто за последние годы и того, что лежит за пределами Стандартной модели. Я бы сказал, что теоретическая физика высоких энергий находится в кризисе, причем достаточно серьезном. С чем они связаны?

Сатклифф вошел в крупный международный коллектив ученых, которые наблюдали за поведением кварков, субатомных частиц, составляющих протоны и нейтроны. Есть шесть разных типов кварков: верхний, нижний, очарованный, странный, прелестный и истинный. Ученые особенно наблюдали за прелестным кварком, который тяжелее и способен менять форму. Прелестный кварк обычно переходит в очарованный кварк, но в редких случаях может превращаться и в верхний кварк. Это могло стать расширением для Стандартной модели, — объясняет Сатклифф.

В выводах, опубликованных в журнале Nature Physics, измерения не показали никакого правостороннего вращения.

Частицы-партнеры, предсказываемые суперсимметрией, могли бы поправить это. Если они существуют, эти дополнительные частицы отменяли бы вклад партнеров в массу Хиггса. Потому бозон Хиггса был бы легким, как мы его и наблюдали. Это естественное объяснение куда более желательно, чем внесение корректировок в существующую Стандартную модель.

Когда вы вынуждены править теории, объясняющие то, что вы в действительности наблюдаете, это знак того, что «вы на самом деле не знаете, что делаете», говорит Линкольн, а эта теория, по всей видимости, неправильная или неполная. Самые легкие суперсимметричные частицы, предсказываемые в рамках теории, могут быть неуловимыми частицами темной материи, на которые охотятся физики десятилетиями. Суперсимметрия предсказывает, что у этой частицы будет нейтральный заряд и она едва ли будет взаимодействовать с любой другой частицей. Примерно такое описание физики ждут от частиц темной материи. Темная материя невидима, поэтому частицы, из которых она состоит, должны быть нейтральными, иначе будут рассеивать свет и станут видимыми.

Эти частицы также ни с чем не взаимодействуют, иначе мы бы их уже обнаружили. Суперсимметрия указала бы в направлении универсальной теории в физике Главная цель физики — постоянно конденсировать наше понимание вселенной все более простыми терминами. К примеру, теперь мы понимаем, что гравитация, которая привела к падению яблока на голову Ньютона, — это та же гравитация, которая управляет планетами и звездами. И теперь мы знаем, что законы электричества и законы магнетизма — просто два закона, которые определяют единую фундаментальную силу электромагнетизма. Если суперсимметричные частицы включены в Стандартную модель, они бы тесно связали три из четырех фундаментальных сил, которые описываются Стандартной моделью: электромагнетизм, сильное и слабое взаимодействие.

Суперсимметрия будет означать, что все эти три силы будут обладать одной и той же силой на очень высоких энергетических уровнях. Калаби-Яу В частности, суперсимметрия может укрепить теорию струн.

Nico, D. Gidley, and A. Rich, P. Vallery, P.

Zitzewitz, and D. Resolution of the Orthopositronium-Lifetime Puzzle. Котов, Б. Левин, В. Ортопозитроний: «О возможной связи между тяготением и электричеством». Препринт 1784 ФТИ им.

Kotov, B. Levin, V. Orthopositronium: «On the possible relation of gravity to electricity». Левин Борис. Глинер Э.

Доказательство суперсимметрии полностью изменит наше понимание Вселенной

  • Telegram: Contact @rasofficial
  • Где же эти частицы-суперпартнёры?
  • «Вселенная удваивается»
  • Обнаруженные частицы Хиггса подтверждают теорию суперсимметрии
  • СУПЕРСИММЕТРИЯ • Большая российская энциклопедия - электронная версия

Поиски суперсимметрии на коллайдере принесли новую интригу

Такая точка зрения может заменить нынешнее объяснение об устройстве Вселенной, Стандартной модели, разработанной в 1970-х годах, но в ней есть пробелы, которые включают гравитацию. Поиск SUSY, или доказать что его не существует, является частью программы подземного ускорителя, где частицы сталкиваются с околосветовой скоростью и создают миллиарды взрывов, наподобие первобытного Большого взрыва. Рольф Хойер, генеральный директор ЦЕРН, регулярно включает его в качестве одной из целей «новой физики» для ускорителя. Но в некоторых прогнозах, перед тем, как гигантская машина начала свою работу в марте 2010 предполагалось, что сигналы SUSY окажутся быстрее.

Чуть больше или меньше — и теория рушится. Многих физиков не устраивает Стандартная модель, требующая такой тонкой настройки. Теория суперсимметрии предлагает альтернативное решение проблемы.

Теория постулирует, что у фундаментальных частиц есть более тяжелые суперсимметричные партнеры, многие из которых неустойчивы и редко взаимодействуют с обычной материей. Квантовые флуктуации суперсимметричных частиц отлично уравновешивают таковые у обычных частиц, что возвращает диапазон масс бозона Хиггса к приемлемым значениям. Теоретики также обнаружили, что теория суперсимметрии может решить другие проблемы. Некоторые из самых легких суперсимметричных частиц могут оказаться темной материей, за которой астрофизики охотятся с 1930-х годов. Теория суперсимметрии может быть использована для объединения всех взаимодействующих сил во Вселенной, кроме гравитации — это был бы большой шаг к единой теории поля, объединяющей и объясняющей всю известную физику.

Ортопозитроний и пространственно-временные эффекты.

Проблема ортопозитрония и экспериментальная «локальная» футурология. Начало Вселенной, звёздное небо и физический наблюдатель. Междисциплинарное исследование. Эйнштейна и интуиция Д. Библиографический список 1. Рубаков В.

Физика будущего: где ждать прорывов и как отменить Большой взрыв. Levin B. Progress in Physics, v. Fayet and M. B104 3 , p. Левин Б.

Westbrook, D. Gidley, R.

Их вклад в современную физику связан с двумя другими симметриями — пространственной и зарядовой. Смысл первой иллюстрируется картиной, которая получается при отражении предмета в зеркале. Оно может быть либо тождественно самому предмету — например, отражение букв О или Ф, либо нет — например, отражение буквы И. В мире микрочастиц всё сложнее: там лучше говорить не о симметрии, а о чётности волновой функции, которая описывает физическую систему. Ясно, что в результате двукратного отражения ничего измениться не должно, но при каждом отражении эта функция, вообще говоря, может поменять знак на противоположный. Если этого не происходит, состояние называют чётным, в противном случае — нечётным.

Возможность того, что при слабых взаимодействиях пространственная «зеркальная» чётность может изменяться, была предсказана в 1956 году американскими физиками Ли Цзундао и Янг Чженьнин, а спустя год американский физик Ву Цзяньсюн экспериментально обнаружила, что такой эффект действительно имеет место: до взаимодействия состояние может быть чётным, а после него стать нечётным, и наоборот. Вскоре после этого советский физик Л. Ландау сформулировал гипотезу, согласно которой при любых взаимодействиях должна сохраняться комбинированная чётность — волновая функция не меняет знак при зеркальном отражении Р и одновременной замене частиц античастицами последнюю операцию называют зарядовым сопряжением и обозначают буквой С. Гипотезу назвали СР-инвариантностью. Долгое время её считали таким же незыблемым законом сохранения, как, скажем, закон сохранения энергии, которому подчиняются все процессы. Но в 1964 году был обнаружен редкий распад долгоживущего нейтрального К-мезона, свидетельствующий, что это не так. Сахаров сразу же отметил, что именно невыполнение СР-инвариантности на ранних стадиях образования горячей Вселенной могло привести к её барионной асимметрии — преобладанию вещества над антивеществом. Тогда всё сущее, в том числе, конечно, и мы сами, порождено нарушенной симметрией.

Оставалось, однако, непонятным, как нарушение СР-инвариантности «втиснуть» в рамки бытовавших в то время теоретических представлений. Дело в том, что тогда ещё только-только была предложена американцами М. Гелл-Маном и Дж. Цвейгом систематизация упоминавшегося выше «зоопарка» адронов, основанная на представлении, что они состоят из кварков трёх типов — u, d и s и соответствующих антикварков. Но нарушению СР-инвариантности там места не было. И тогда Кобаяши и Маскава обратили внимание на то обстоятельство, что несохранение СР-чётности можно описать весьма непринуждённо, если кроме упомянутых выше имеются как минимум ещё три кварка. Говоря точнее, если в природе существует не менее трёх поколений кварков. Их догадка блестяще подтвердилась, теперь мы знаем, что три поколения — это пары ud -, cs - и tb -кварков, которые, однако, «смешиваются» друг с другом.

Последний, тяжёлый t-кварк третьего поколения, «поймали» в Национальной ускорительной лаборатории им. Более того, выяснилось, что при распадах нейтральных B-мезонов СР-чётность нарушается намного сильнее, чем в аналогичных процессах с участием К-мезонов, о которых упоминалось выше. В заключение заметим, что во всей этой захватывающей физике микромира ещё далеко не всё понятно.

[Перевод] Суперсимметрия не подтверждается экспериментами, и физики ищут новые идеи

Большой адронный коллайдер подорвал позиции теории суперсимметрии 272 0 В данных, собранных детекторами Большого адронного коллайдера, не было обнаружено подтверждений гипотезы суперсимметрии, которая, в частности, предполагает, что у каждой элементарной частицы существует суперсимметричный «двойник». Новые результаты, детализированные в двух статьях, не исключают эту гипотезу полностью, но устанавливают новые пределы для ее обнаружения. Теория суперсимметрии под угрозой Сотрудники Европейского центра ядерных исследований ЦЕРН , работающие на Большом адронном коллайдере, обнаружили чрезвычайно редкий случай распада элементарных частиц. Это наблюдение наносит значительный урон теории суперсимметрии. Она основана на предположении, что существует гипотетическая симметрия, связывающая бозоны и фермионы в природе. Абстрактное преобразование суперсимметрии связывает бозонное и фермионное квантовые поля, так что они могут превращаться друг в друга. Образно можно сказать, что преобразование суперсимметрии может переводить вещество во взаимодействие, и наоборот. Теория суперсимметрии выдвигалась многими физиками-теоретиками в качестве средства объяснения некоторых несоответствий в Стандартной модели Вселенной. Эти физики очень рассчитывали получить с помощью Большого адронного коллайдера первое экспериментальное подтверждение этой теории.

Слово «одномерный» говорит о том, что струна имеет только 1 измерение, длину, в отличие от, например, квадрата, который имеет длину и высоту. Эти суперструны теория делит на два вида — замкнутые и открытые. Открытая струна имеет концы, которые не соприкасаются друг с другом, в то время как замкнутая струна является петлей без открытых концов. В итоге было установлено, что эти струны, называемые струнами первого типа, подвержены 5 основным типам взаимодействий. Взаимодействия основаны на способности струны соединять и разделять свои концы. Поскольку концы открытых струн могут объединиться, чтобы образовывать замкнутые, нельзя построить теорию суперструн, не включающую закольцованные струны. Это оказалось важным, так как замкнутые струны обладают свойствами, как полагают физики, которые могли бы описать гравитацию. Другими словами, ученые поняли, что теория суперструн вместо объяснения частиц материи может описывать их поведение и силу тяжести. Через многие годы было обнаружено, что, кроме струн, теории необходимы и другие элементы. Их можно рассматривать как листы, или браны.

Струны могут крепиться к их одной или обеим сторонам. Квантовая гравитация Современная физика имеет два основных научных закона: общую теорию относительности ОТО и квантовую. Они представляют совершенно разные области науки. Квантовая физика изучает мельчайшие природные частицы, а ОТО, как правило, описывает природу в масштабах планет, галактик и вселенной в целом. Гипотезы, которые пытаются объединить их, называются теориями квантовой гравитации. Наиболее перспективной из них сегодня является струнная. Замкнутые нити соответствуют поведению силы тяжести. В частности, они обладают свойствами гравитона, частицы, переносящей гравитацию между объектами. Объединение сил Теория струн пытается объединить четыре силы — электромагнитную, сильные и слабые ядерные взаимодействия, и гравитацию — в одну. В нашем мире они проявляют себя как четыре различные явления, но струнные теоретики считают, что в ранней Вселенной, когда были невероятно высокие уровни энергии, все эти силы описываются струнами, взаимодействующими друг с другом.

Суперсимметрия Все частицы во вселенной можно разделить на два типа: бозоны и фермионы. Теория струн предсказывает, что между ними существует связь, называемая суперсимметрией. При суперсимметрии для каждого бозона должен существовать фермион и для каждого фермиона — бозон. К сожалению, экспериментально существование таких частиц не подтверждено. Суперсимметрия является математической зависимостью между элементами физических уравнений. Она была обнаружена в другой области физики, а ее применение привело к переименованию в теорию суперсимметричных струн или теория суперструн, популярным языком в середине 1970 годов. Одним из преимуществ суперсимметрии является то, что она значительно упрощает уравнения, позволяя исключить некоторые переменные. Без суперсимметрии уравнения приводят к физическим противоречиям, таким как бесконечные значения и воображаемые энергетические уровни.

Барионный заряд — внутренняя характеристика частиц, равная 1 у барионов, —1 у антибарионов и 0 у всех остальных частиц. Читайте в любое время о — они всегда рождаются парами. Эти сравнительно долгоживущие частицы успевают пролететь почти 0,5 мм, прежде чем распасться на более лёгкие частицы. Очевидно, что эти реакции получаются одна из другой посредством СР-преобразования. Поэтому СР-симметрия требует того, чтобы число тех и других было одинаково. Но оказалось, что первый распад происходит примерно на 10 процентов чаще. Источник Доказательство суперсимметрии полностью изменит наше понимание Вселенной Большой адронный коллайдер очень скоро снова заработает с удвоенной скоростью. Физики полагают, что столкновения частиц на околосветовых скоростях помогут раскрыть целый набор новых частиц, открывающих изнанку физики: суперсимметрию. В прошлый раз мы немного затронули эту тему, пришло время обсудить, что это за суперсимметрия и зачем она нам. На данный момент главенствующей теорией физики элементарных частиц является Стандартная модель. Она отлично объясняет, как взаимодействуют основные строительные блоки материи, создавая Вселенную, которую мы видим вокруг. Стандартная модель — лучшее описание, которое у нас есть, но оно далеко от совершенства. Неполная теория Стандартная модель образовалась в 1970-х годах. Это набор уравнений, который описывает, как все известные элементарные частицы взаимодействуют с четырьмя фундаментальными силами: сильным и слабым взаимодействием, электромагнетизмом и гравитацией. Стандартная модель отлично связывает первые три из этих четырех фундаментальных сил, но не касается гравитации. Гравитация настолько слабая сила, что даже игрушечный магнит может ее побороть. Остальные три силы намного сильнее. Гравитация имеет крайне важное значение для физики, и ее поведение описывает общая теория относительности Эйнштейна. Стандартная модель также не может объяснить присутствие таинственного вещества под названием темная материя, которое удерживает галактики вместе. И не может объяснить, почему во Вселенной намного больше материи, чем антиматерии, хотя должно быть равное количество. Суперсимметрия — это расширение Стандартной модели, которое могло бы помочь заполнить некоторые из этих недостатков. Она прогнозирует, что каждая частица в Стандартной модели может обладать пока не обнаруженным партнером. Это касается даже знакомых нам частиц вроде электронов. Суперсимметрия предсказывает, что у электронов есть партнеры «селектроны», у фотонов — «фотино» и так далее. Вот все пробелы в физике, которые может исправить суперсимметрия. Суперсимметрия может объяснить, почему бозон Хиггса такой легкий Несмотря на то, что Стандартная модель предсказала существование бозона Хиггса, его обнаружение проделало еще одну трещину в теории. Хиггс, который физики наблюдали на БАК в 2012 году, намного легче, чем ожидалось. Стандартная модель предсказывает, что бозон Хиггса в триллионы раз тяжелее, чем тот, что наблюдали физики во время первого запуска БАК, как говорит Дон Линкольн, физик из Лаборатории Ферми. Читайте также: Состояние сингулярности как начала вселенной Будучи частицей, которая дает массу другим частицам, Хиггс должен быть очень тяжелым, поскольку взаимодействует с огромным числом частиц. Частицы-партнеры, предсказываемые суперсимметрией, могли бы поправить это. Если они существуют, эти дополнительные частицы отменяли бы вклад партнеров в массу Хиггса. Потому бозон Хиггса был бы легким, как мы его и наблюдали. Это естественное объяснение куда более желательно, чем внесение корректировок в существующую Стандартную модель. Когда вы вынуждены править теории, объясняющие то, что вы в действительности наблюдаете, это знак того, что «вы на самом деле не знаете, что делаете», говорит Линкольн, а эта теория, по всей видимости, неправильная или неполная. Самые легкие суперсимметричные частицы, предсказываемые в рамках теории, могут быть неуловимыми частицами темной материи, на которые охотятся физики десятилетиями. Суперсимметрия предсказывает, что у этой частицы будет нейтральный заряд и она едва ли будет взаимодействовать с любой другой частицей. Примерно такое описание физики ждут от частиц темной материи. Темная материя невидима, поэтому частицы, из которых она состоит, должны быть нейтральными, иначе будут рассеивать свет и станут видимыми.

Однако исследователи отмечают, что пока рано полностью исключать ее — с их точки зрения, новые результаты только устанавливают более высокие энергетические пределы для проявления суперсимметрии. Зачем нужен большой адронный коллайдер Большой адронный коллайдер — ускоритель частиц, благодаря которому физики смогут проникнуть так глубоко внутрь материи, как никогда ранее. Суть работ на коллайдере заключается в изучении столкновения двух пучков протонов с суммарной энергией 14 ТэВ на один протон. Эта энергия в миллионы раз больше, чем энергия, выделяемая в единичном акте термоядерного синтеза. Кроме того, будут проводиться эксперименты с ядрами свинца, сталкивающимися при энергии 1150 ТэВ. Ускоритель БАК обеспечит новую ступень в ряду открытий частиц, которые начались столетие назад. Тогда ученые еще только обнаружили всевозможные виды таинственных лучей: рентгеновские, катодное излучение. Откуда они возникают, одинаковой ли природы их происхождение и, если да, то какова она? Сегодня мы имеем ответы на вопросы, позволяющие гораздо лучше понять происхождение Вселенной.

🔸 Доказательство суперсимметрии полностью изменит наше понимание Вселенной🔸

Но его предсказанная масса сама подвержена большим флуктуациям, вызванным квантовыми эффектами от других элементарных частиц. Эти колебания могут увеличить его массу до такого значения, после которого другие элементарные частицы станут более массивными, чем они есть на самом деле, что фактически противоречит Стандартной модели. В ее рамках теоретики могут исключить влияние колебаний в своих уравнениях, но только если будут иметь точно установленную массу бозона Хиггса. Чуть больше или меньше — и теория рушится.

Многих физиков не устраивает Стандартная модель, требующая такой тонкой настройки. Теория суперсимметрии предлагает альтернативное решение проблемы. Теория постулирует, что у фундаментальных частиц есть более тяжелые суперсимметричные партнеры, многие из которых неустойчивы и редко взаимодействуют с обычной материей.

Квантовые флуктуации суперсимметричных частиц отлично уравновешивают таковые у обычных частиц, что возвращает диапазон масс бозона Хиггса к приемлемым значениям.

В частности, именно она обеспечивает самосогласованность теории суперструн. Все эти следствия и их непротиворечивость необходимо проверять теоретически. Подтверждение гипотезы, что суперструны описывают все фундаментальные взаимодействия, — кропотливая и долговременная работа», — подчеркнул Евгений Иванов. Суперсимметрия в теории реализуется в суперпространстве, в котором к пространству Минковского добавлены дополнительные фермионные измерения, так называемые грассмановы координаты. Грассмановы координаты не имеют физической интерпретации; каждая из них, возведенная в квадрат, дает ноль. Таким образом, суперпространство является умозрительной вспомогательной структурой, которая позволяет максимально просто и ясно реализовать на ней суперсимметрию. Существуют и теории с настоящими бозонными дополнительными измерениями — суперпространства с 10 бозонными координатами, и еще более сложные теории с 11-мерным пространством. Эти дополнительные бозонные измерения которые не наблюдаются при энергиях, достижимых на настоящий момент необходимы для согласованности теории суперструн на квантовом уровне.

Функции, заданные в суперпространстве суперполя , в разложении по грассмановым переменным дают автоматически все поля, которые объединяются в супермультиплеты. Вскоре после открытия суперсимметрии выяснилось, что простые суперпространства не в полной мере отвечают теории суперструн и ее низкоэнергетическим пределам, и нужно вводить расширенные суперпространства, где грассмановы координаты имеют внутренний индекс, а потому преобразуются еще и по внутренней симметрии. Для описания таких расширенных суперпространств наиболее естественным и простым образом необходимо, кроме пространственных координат и грассмановых переменных, ввести дополнительные координаты, а именно т. Гармоническое суперпространство было открыто в Дубне коллективом авторов. На сегодняшний день понятие гармонического суперпространства стало общепринятым в математической физике.

Conti, and A. Precision measurement of the orthopositronium vacuum rate using the gas technique. A40 10 , p. Nico, D. Gidley, and A. Rich, P. Vallery, P. Zitzewitz, and D. Resolution of the Orthopositronium-Lifetime Puzzle. Котов, Б. Левин, В. Ортопозитроний: «О возможной связи между тяготением и электричеством». Препринт 1784 ФТИ им. Kotov, B. Levin, V.

Они измерили скорость распада частицы под названием мезон Bs на две частицы - мюоны. Впервые такой распад наблюдался в искусственных условиях, и по подсчетам ученых, на каждый миллиард распадов этого мезона приходится всего три распада такого рода. Если бы сверхпартнеры обычных частиц существовали в реальности, число таких распадов было бы куда выше. Это важнейший тест правильности всей теории суперсимметрии, которая является весьма популярной среди многих физиков-теоретиков. Профессор Вал Гибсон, руководитель группы исследователей из Кембриджа, которая участвует в эксперименте LHCb, заявил, что новые результаты ставят в опасное положение тех его коллег, кто работает с теорией суперсимметрии. Эти результаты на самом деле полностью укладываются в Стандартную модель. Суперчастицы до сих пор не обнаружены и другими детекторами на других ускорителях. Загадка темной материи Если теория суперсимметрии не в состоянии объяснить существование темной материи, теоретикам придется искать другие объяснения несоответствий в Стандартной модели. Пока что физики, которые спешат предложить свои варианты новой физической теории, терпят неудачу.

Похожие новости:

Оцените статью
Добавить комментарий