Новости фрактал в природе

Фракталы кажутся нам слишком совершенными, чтобы существовать в реальности, но они не так уж редко встречаются в природе, в частности реализуя себя в виде растений. дробленый) - термин, означающий геометрическую фигуру, обладающую свойством самоподобия, то есть составленную из нескольких частей, каждая из которых подобна всей фигуре целиком. Природа зачастую. неупо-рядоченные системы, для которых самоподобие выполняется только в среднем.

Созерцание великого фрактального подобия

Если при решении мы видим, что значение Z сильно увеличивается стремится к бесконечности , значит изначальное число не подходит. Если же Z колеблется в пределах одного значения, значит выбранное число входит в множество. Далее полученные значения отмечают на плоскости. Уравнение решается огромное количество раз и в итоге получается графическое изображение множества Мандельброта его мы видели выше.

До 1975 года, фракталы встречались в истории время от времени, но после работы Бенуа Мандельброта, изучение фракталов начало приобретать массовый характер, все больше интегрируясь в мир. Изучение фракталов вызвало новый виток в изучении разных сфер жизни: в компьютерной графике, в передаче данных, в радиотехнике, в производстве, в работе мозга, в движениях человека, в росте живых существ и многом другом. Представьте, насколько упрощается построение графических моделей, зная, что они самоподобны и вычисляются по одной простой формуле.

Насколько становиться проще кодирование и передача информации, когда есть понимание, что их можно «сжать» по определённой фрактальный закономерности. И насколько понятней становится эволюция живых существ, когда мы можем найти фракталную модель их развития. Фракталы в тейдинге.

В двухмерном случае их получают с помощью некоторой ломаной или поверхности в трехмерном случае , называемой генератором. За один шаг алгоритма каждый из отрезков, составляющих ломаную, заменяется на ломаную - генератор, в соответствующем масштабе. В результате бесконечного повторения этой процедуры, получается геометрический фрактал. Примерами геометрических фракталов могут служить: 1 Кривая Коха — фрактальная кривая , описанная в 1904 году шведским математиком Хельге фон Кохом. Три копии кривой Коха, построенные остриями наружу на сторонах правильного треугольника , образуют замкнутую кривую бесконечной длины, называемую снежинкой Коха приложение 7.

Предложен французским математиком П. Инициатором является отрезок , а генератором является ломаная из восьми звеньев два равных звена продолжают друг друга приложение 9. Пифагор , доказывая свою знаменитую теорему , построил фигуру , где на сторонах прямоугольного треугольника расположены квадраты. Впервые дерево Пифагора построил А. Босман 1891 — 1961 во время Второй мировой войны , используя обычную чертёжную линейку приложение 11.

Также известен как «решётка» или «салфетка» Серпинского приложение 12. Алгебраические фракталы Это самая крупная группа фракталов. Они оправдывают своё название, так как строятся на основе алгебраических формул, иногда довольно простых. К ним можно отнести фрактал Мандельброта приложение 13 , фрактал Ньютона приложение 14 , множество Жюлиа приложение 15 и многие другие. Стохастические фракталы Третьей крупной разновидностью фракталов являются стохастические фракталы, которые образуются путем многократных повторений случайных изменений каких-либо параметров.

В результате итерационного процесса получаются объекты очень похожие на природные фракталы — несимметричные деревья, изрезанные лагунами береговые линии островов и многое другое. Двумерные стохастические фракталы используются преимущественно при моделировании рельефа местности и поверхности моря приложение 16. Применение фракталов Фрактальная живопись. Фрактальная живопись — одно из направлений современного арта, популярное среди цифровых художников. Фрактальные картины необычно и завораживающе действуют на зрителя, рождая яркие пылающие образы.

Сказочные абстракции создаются посредством скучных математическим формул, но воображение воспринимает их живыми. Фракталы в литературе. Среди литературных произведений находят такие, которые обладают фрактальной природой, то есть вложенной структурой самоподобия: «Вот дом.

Молекулярным фракталом оказался микробный фермент — цитратсинтазу цианобактерии, которая спонтанно собирается в структуру, известную как треугольник Серпинского. Эта структура представляет собой треугольный узор, который состоит из меньших треугольников. До сих пор ученые не встречали подобные формы, которые сохраняли бы свое самоподобие в больших масштабах. Исследователи получили изображение белковой молекулы с помощью электронного микроскопа.

Например, у моллюсков-наутилид каждая ячейка их раковины — примерная копия следующей, масштабированная константой и выложенная в логарифмическую спираль. Чаще всего в природе встречается последовательность Фибоначчи. Она начинается с чисел 1 и 1, а затем каждое последующее число получается путем сложения двух предыдущих чисел. Спирали в растениях наблюдаются в расположении листьев на стебле, а также в структуре бутона и семян цветка — например, у подсолнуха или структуры плода ананаса и салака. Последовательность Фибоначчи можно заметить и у сосновой шишки, где огромное количество спиралей расположено по часовой и против часовой стрелки. Эти механизмы объясняются по-разному — математикой, физикой, химией, биологией. Каждое из объяснений верно само по себе, но необходимо учитывать их все. С точки зрения физики, спирали — конфигураций низких энергий, которые возникают спонтанно путем самоорганизации процессов в динамических системах.

С точки зрения химии, спираль может быть образована реакционно-диффузионным процессом с привлечением как активации, так и ингибирования. Филлотаксис контролируется протеинами, которые управляют концентрацией растительного гормона ауксина, который активирует рост среднего стебля наряду с другими механизмами контроля относительного угла расположения бутона к стеблю. С точки зрения биологии листья расположены настолько далеко друг от друга, насколько позволяет естественный отбор, так как он максимизирует доступ к ресурсам, особенно к солнечному свету, для фотосинтеза. Фракталы — бесконечное почти повторение Фракталы — еще одна интересная математическая форма, которую каждый видели в природе. Сам Фрактал — это самоподобная повторяющаяся форма, что означает, что одна и та же основная форма появляется снова и снова. Другими словами, если вы увеличите или уменьшите масштаб, везде будет видна одна и та же. Эти самоподобные циклические математические конструкции, обладающие фрактальной размерностью, встречаются довольно часто, особенно среди растений. Самый известный пример — папоротник.

Листья папоротников являются типичным примером самоповторяющегося ряда.

Фракталы в природе и в дизайне: сакральная геометрия повсюду

Фракталом в прессе и научно-популярной литературе могут называть фигуры, обладающие какими-либо из перечисленных ниже свойств. Поскольку в природе мы часто наблюдаем фрактальные узоры, то искусственно созданный фрактальный трехмерный объект кажется невероятно реалистичным и даже «живым». Термин «фрактал» был введён Бенуа Мандельбротом в 1975 году и получил широкую популярность с выходом в 1977 году его книги «Фрактальная геометрия природы».

Фракталы в природе (53 фото)

Роль её печени играют камни и песок, через который фильтруются макро загрязнения, и круговорот воды в природе, который отделяет молекулы воды от микро мусора. Природа зачастую создаёт удивительные и прекрасные фракталы, с идеальной геометрией и такой гармонией, что можно замереть от восхищения. Термин «фрактал» был введён Бенуа Мандельбротом в 1975 году и получил широкую популярность с выходом в 1977 году его книги «Фрактальная геометрия природы».

ХАОС, ФРАКТАЛЫ И ИНФОРМАЦИЯ

фрактальной размерностью, характеризующей скорость увеличения элементов фрактала с увеличением интервала масштабов. Да, в физической Природе не существуют ни идеальный газ, ни континуальная материя, ни фрактальные объекты с «действительно бесконечной» лестницей иерархических этажей. Международная группа ученых обнаружила впервые нашла в природе молекулу, обладающую свойствами регулярного фрактала.

Что такое фрактал?

фракталам. Фрактальную природу имеют многие структуры в природе, они нашли применение в науке и технике. Открытие молекулярного фрактала в цианобактерии – это не просто научная сенсация, но и философский повод задуматься о роли случайности в возникновении порядка, о сложном взаимодействии хаоса и гармонии в природе. Деревья – один из самых квинтэссенциальных фракталов в природе. неупо-рядоченные системы, для которых самоподобие выполняется только в среднем. Термин «фрактал» введён Бенуа Мандельбротом в 1975 году и получил широкую известность с выходом в 1977 году его книги «Фрактальная геометрия природы».

Последние записи

  • Физики нашли фракталы в лазерах
  • Фракталы в природе - 65 фото
  • Статьи по теме
  • Фракталы и их дизайн — неопознанные элементы науки

Случайность как художник: учёные обнаружили первую фрактальную молекулу

Фракталы представляют собой довольно сложные для определения математические объекты, но в общих чертах их можно охарактеризовать как геометрические формы, состоящие из меньших структур, которые, в свою очередь, напоминают исходную целостную конфигурацию. Красота фракталов состоит в том, что их "бесконечная" сложность сформирована относительно простыми линиями. Фрактальную природу имеют многие структуры в природе, они нашли применение в науке и технике. Найдите нужное среди 30 986 стоковых фото, картинок и изображений роялти-фри на тему «Fractals In Nature» на iStock.

Фрактал. 5 вопросов

После с каждым из маленьких треугольников операцию повторяем. Ему была большая оппозиция: такого рода объекты в научной литературе часто назывались «монстрами», к ним скептически относились. В классической евклидовой геометрии все прямо: либо прямые, либо углы, либо, в крайнем случае, какие-то гладкие линии. Там нет непонятных вещей, которые бы постоянно себе отращивали новое «ухо». Несмотря ни на что Мандельброт сумел «продвинуть» свои исследования. Более того, всему этому нашлось практическое применение.

Множество Мандельброта Почему их называли «монстрами»? Это плохо, так как наш мозг привык работать с визуальными картинками. С появлением компьютера мы с грехом пополам начали справляться с задачей отрисовывания фракталов. Во-вторых, вычислительные методы, которые нам были раньше известны матанализ и так далее , хорошо работали только с «гладкими» кривыми. Все кривые делятся на два больших класса: спрямляемые и неспрямляемые.

На спрямляемую кривую мы можем поставить точки, и тем самым разбить ее на множество прямых отрезков. Таким образом мы посчитаем длину этой кривой, так как длина традиционно считается только прямыми отрезками. Это как в школе, когда к сложным фигурам прикладывали нитку, а потом нитку распрямляли и прикладывали к линейке. Вся классическая математика связана с таким вот свойством. К фракталам, как мы видим, ниточку не доприкладываешься.

С точки зрения классической механики, также возникают проблемы в взаимодействии с фракталами. Скорость — это вектор. У вектора должны быть направление и величина.

Помните выдвижные антенны на первых моделях? Они мешали, увеличивали размеры устройства, в конце концов, часто ломались.

Полагаем, они навсегда канули в Лету, и отчасти виной тому… фракталы. Фрактальные рисунки завораживают своими узорами. Они определенно напоминают изображения космических объектов — туманностей, скопления галактик и так далее. Поэтому вполне закономерно, что, когда Мандельброт озвучил свою теорию фракталов, его исследования вызвали повышенный интерес у тех, кто занимался изучением астрономии. Один из таких любителей по имени Натан Коэн Nathan Cohen после посещения лекции Бенуа Мандельброта в Будапеште загорелся идеей практического применения полученных знаний.

Правда, сделал он это интуитивно, и не последнюю роль в его открытии сыграл случай. Будучи радиолюбителем, Натан стремился создать антенну, обладающую как можно более высокой чувствительностью. Единственный способ улучшить параметры антенны, который был известен на то время, заключался в увеличении ее геометрических размеров. Однако владелец жилья в центре Бостона, которое арендовал Натан, был категорически против установки больших устройств на крыше. Тогда Натан стал экспериментировать с различными формами антенн, стараясь получить максимальный результат при минимальных размерах.

Загоревшись идеей фрактальных форм, Коэн, что называется, наобум сделал из проволоки один из самых известных фракталов — «снежинку Коха». Шведский математик Хельге фон Кох Helge von Koch придумал эту кривую еще в 1904 году. Она получается путем деления отрезка на три части и замещения среднего сегмента равносторонним треугольником без стороны, совпадающей с этим сегментом. Определение немного сложное для восприятия, но на рисунке все ясно и просто. Существуют также другие разновидности «кривой Коха», но примерная форма кривой остается похожей Когда Натан подключил антенну к радиоприемному устройству, он был очень удивлен — чувствительность резко увеличилась.

После серии экспериментов будущий профессор Бостонского университета понял, что антенна, сделанная по фрактальному рисунку, имеет высокий КПД и покрывает гораздо более широкий частотный диапазон по сравнению с классическими решениями. Кроме того, форма антенны в виде кривой фрактала позволяет существенно уменьшить геометрические размеры. Натан Коэн даже вывел теорему, доказывающую, что для создания широкополосной антенны достаточно придать ей форму самоподобной фрактальной кривой. Автор запатентовал свое открытие и основал фирму по разработке и проектированию фрактальных антенн Fractal Antenna Systems , справедливо полагая, что в будущем благодаря его открытию сотовые телефоны смогут избавиться от громоздких антенн и станут более компактными. В принципе, так и произошло.

Правда, и по сей день Натан ведет судебную тяжбу с крупными корпорациями, которые незаконно используют его открытие для производства компактных устройств связи. Некоторые известные производители мобильных устройств, как, например, Motorola, уже пришли к мирному соглашению с изобретателем фрактальной антенны. Пятая глава книги «Фрактальная геометрия природы» посвящена, на первый взгляд, довольно простому вопросу: «Какова длина береговой линии Британии? Этот вопрос Бенуа позаимствовал у знаменитого американского ученого Эдварда Каснера. Последний, как и многие другие известные математики, очень любил общаться с детьми, задавая им вопросы и получая неожиданные ответы.

Иногда это приводило к удивительным последствиям. Так, например, девятилетний племянник Эдварда Каснера придумал хорошо всем известное теперь слово «гугол», обозначающее единицу со ста нулями. Но вернемся к фракталам. Американский математик любил задавать вопрос, какова длина береговой линии США. Выслушав мнение собеседника, Эдвард сам говорил правильный ответ.

Если измерять длину по карте ломаными отрезками, то результат окажется неточным, ведь береговая линия имеет большое количество неровностей. А что будет, если измерять максимально точно? Придется учитывать длину каждой неровности — нужно будет измерять каждый мыс, каждую бухту, скалу, длину скалистого уступа, камня на ней, песчинки, атома и так далее. Поскольку число неровностей стремится к бесконечности, измеренная длина береговой линии будет при измерении каждой новой неровности увеличиваться до бесконечности. Чем меньше мера при измерении, тем больше измеряемая длина Интересно, что, следуя подсказкам Эдварда, дети намного быстрее взрослых говорили правильное решение, в то время как у последних были проблемы с принятием такого невероятного ответа.

На примере этой задачи Мандельброт предложил использовать новый подход к измерениям. Поскольку береговая линия близка к фрактальной кривой, значит, к ней можно применить характеризующий параметр — так называемую фрактальную размерность. Что такое обычная размерность — понятно любому. Если размерность равна единице, мы получаем прямую, если два — плоскую фигуру, три — объем. Однако такое понимание размерности в математике не срабатывает с фрактальными кривыми, где этот параметр имеет дробное значение.

Фрактальную размерность в математике можно условно рассматривать как «неровность». Чем выше неровность кривой, тем больше ее фрактальная размерность. Кривая, обладающая, по Мандельброту, фрактальной размерностью выше ее топологической размерности, имеет аппроксимированную протяженность, которая не зависит от количества измерений. В настоящее время ученые находят все больше и больше областей для применения теории фракталов. С помощью фракталов можно анализировать колебания котировок на бирже, исследовать всевозможные естественные процессы, как, например, колебание численности видов, или моделировать динамику потоков.

Фрактальные алгоритмы могут быть использованы для сжатия данных, например для компрессии изображений. И кстати, чтобы получить на экране своего компьютера красивый фрактал, не обязательно иметь докторскую степень. В основе инструментария этого простого графического редактора лежит все тот же принцип самоподобия. В вашем распоряжении имеется всего две простейших формы — четырехугольник и круг. Вы можете добавлять их на холст, масштабировать чтобы масштабировать вдоль одной из осей, удерживайте клавишу Shift и вращать.

Фракталы — это объекты, для которых характерно самоподобие, то есть точное или частичное совпадение фрагментов различных размеров. С точки зрения математики фракталы являются особенными фигурами, так как обладают дробной размерностью. Это значит, что плоский фрактал в некотором смысле «проще» настоящей плоскости, но «сложнее» прямой. Фракталы также встречаются в природе. В частности, изрезанные береговые линии можно описать с помощью этих фигур, а кочан цветной капусты сорта Романеско, контуры облаков и ветвящаяся форма молний обладают свойством самоподбия.

В чем странность этого объекта? Несмотря на то, что мы постоянно что-то выкидываем, у нас остается множество точек, весьма сложно устроенных. Есть еще один более замысловатый пример: «Салфетка Серпинского».

Берем равносторонний треугольник, в серединах его сторон отмечаем точки, соединяем. Получаем равносторонний треугольник, который вырезаем. У нас остается три равносторонних треугольника. Дальше, как можно уже понять, мы то же самое делаем с каждым из треугольников до бесконечности. В чем здесь странные свойства? Исходный треугольник мы можем сделать сколь угодно большим, но при этом площадь у него будет нулевая. Еще один фрактал — «Снежинка Коха». Мы берем равносторонний треугольник, каждую сторону делим на три части и достраиваем по равностороннему треугольнику.

После с каждым из маленьких треугольников операцию повторяем. Ему была большая оппозиция: такого рода объекты в научной литературе часто назывались «монстрами», к ним скептически относились. В классической евклидовой геометрии все прямо: либо прямые, либо углы, либо, в крайнем случае, какие-то гладкие линии. Там нет непонятных вещей, которые бы постоянно себе отращивали новое «ухо». Несмотря ни на что Мандельброт сумел «продвинуть» свои исследования. Более того, всему этому нашлось практическое применение. Множество Мандельброта Почему их называли «монстрами»? Это плохо, так как наш мозг привык работать с визуальными картинками.

Похожие новости:

Оцените статью
Добавить комментарий