Новости / Батарейки и аккумуляторы. Российские ученые создали атомную батарейку, которая способна работать до 20 лет. Новая батарейка преобразует энергию радиоактивного распада в электрическую и может использоваться для питания микроэлектронной аппаратуры.
Алмазные батареи, работающие на ядерных отходах, могут прослужить тысячи лет
Компании инвестируют в разработку новых видов аккумуляторов для электромобилей. Отчасти это связано с падением спроса на традиционные автомобили с двигателями внутреннего сгорания в Китае и Европе. С другой стороны, дело в ограничениях литий-ионных батарей. Neue Klasse — концептуальный седан BMW с новым типом аккумуляторов Ученые разрабатываю сразу несколько перспективых типов аккумуляторов на замену литий-ионным Главный претендент — твердотельные аккумуляторы. В них твердые электролиты вещества, проводящие электрический ток в отличие от жидких в литий-ионных. Благодаря этому первые выдерживают более высокую температуру, что делает их безопасной альтернативой.
Новое устройство представляет собой компактный аппарат размером с книгу. Электроды, закрепляемые на пациенте, считывают показатели, пока тот выполняет специальный комплекс упражнений. Одновременно встроенное программное обеспечение сопоставляет физическую нагрузку с исследованием кровотока и передает данные на компьютер врача.
Биотопливный элемент вводят пациенту через прокол в вене, что не предполагает обширного хирургического вмешательства. Прибор работает за счёт окисления глюкозы и, в отличие от обычных батарей, не требует замены. Об этом сообщил ТГ-канал «Спецоперация Z».
Десятилетие науки и технологий в России Российская наука стремительно развивается. Одна из задач Десятилетия — рассказать, какими научными именами и достижениями может гордиться наша страна. В течение всего Десятилетия при поддержке государства будут проходить просветительские мероприятия с участием ведущих деятелей науки, запускаться образовательные платформы, конкурсы для всех желающих и многое другое.
Физики придумали «вечную» батарейку на основе алмаза
Этого было более чем достаточно для работы систем, потреблявших 100 Вт, но к 2001 году энергии уже едва хватало на поддержание функционирования лишь некоторых модулей. До этого новые системы прошли обкатку в спутниках на околоземной орбите. Каждый из космических аппаратов получил по три РИТЭГа общей электрической мощностью 470 Вт на момент запуска с перспективой снижения электрической мощности в два раза примерно через 88 лет. Источниками энергии стали 24 спрессованные сферы из оксида плутония. Плюс на борту имелось по девять нагревателей RHU их может быть и больше, они устанавливаются точечно в рассчитанных местах. Инженерам приходилось решать проблемы с нагревом в тысячи градусов как в случае с новой системой, так и в прошлом и будущем Спустя пару лет после запуска «Вояджеров» США временно вышли из гонки, а СССР, напротив, наращивал количество запущенных спутников — это были аппараты серии УС-А. Но на них устанавливали ядерные энергетические установки БЭС-5 «Бук», работавшие на уране. Их электрическая мощность составляла 3 кВт при тепловой мощности 100 кВт, что заметно превосходило показатели американских систем, работавших по несколько иному принципу. Фото: Los Alamos National Laboratory Срок работы спутников с «Буками» был заметно меньше: он составлял около полугода потом аппарат становился мусором, который летает вокруг Земли до сих пор , и это при более высоком весе ядерного топлива. Поэтому требовались регулярные запуски, с которыми то и дело не ладилось. На смену БЭС-5 пришли ядерные установки «Топаз», которые были мощнее предшественников более чем в два раза.
Однако новые системы получили лишь два спутника, и один из них был уничтожен. Фото: kerbalspaceprogram. Однако какого-то значительного шага вперед с точки зрения эффективности сделано не было. Новые «атомные батарейки» устанавливали в автоматическую межпланетную станцию АМС «Улисс», изучавшую Солнце и Юпитер; в спускаемый зонд «Галилео» для исследования атмосферы Юпитера; в станцию «Кассини-Гюйгенс», которая исследовала Сатурн, его кольца и спутники; в АМС «Новые горизонты», выполняющую программу исследования объектов Солнечной системы. АМС «Улиcс». Китай также предпринял попытки использовать технологию — в АМС «Чанъэ-3» и вездеходе «Юйту», прибывшем на Луну тем же «рейсом». Точно не известно, были это источники питания или обогреватели, так как данные разнятся. Что дальше? В рамках него планируется разработать систему, которая позволит активнее путешествовать по Солнечной системе. Правда, это уже не «атомные батарейки», а стационарная система на обогащенном уране.
В процессе испытаний радиационный фон оставался в норме. А алмазная оболочка дешевые искусственные алмазы успешно защищала корпус от возможных повреждений. Еще один положительный момент — работающая батарейка не выделяет углекислый газ. Безопасность и эффективность бета-гальванической батареи подтвердили в Ливерморской национальной лаборатории имени Лоуренса и Кавендишской лаборатории Кембриджского университета. Внутренний стержень «фонит» до 28 000 лет, поэтому элементы питания будут работать гораздо дольше, чем техника, в которую они установлены. Теоретически они могут работать совместно с литий-ионными батареями, установленными на большинстве современных устройств. При работе «алмазная» батарейка будет передавать излишки электричества литиевому аккумулятору. Наша разработка полностью заряжала бы вашу батарею с нуля пять раз в час. Представьте себе это.
В итоге остановились на никеле-63. В природе такого изотопа не существует. Легче всего его получить из никеля-62, который образуется естественным путём. Поэтому сначала пришлось воспользоваться центрифугой, чтобы увеличить концентрацию никеля-62. Дальше ещё сложнее: целых два года бомбардировали нейтронами никель-62, чтобы часть атомов схватила дополнительную частицу и превратилась в никель-63. Об этом удалось договориться с Ленинградской АЭС. Но далеко не весь металл превратился в нужный изотоп. Поэтому его разогрели до такого состояния, что он перешёл в газовую фазу, и снова разделили по массе, чтобы увеличить концентрацию никеля-63.
Дорогой - это мягко сказано. Одна экспериментальная батарейка стоит от трёх до десяти миллионов рублей. Ещё одна проблема - нанесение никеля-63 на подложку из кремния. Нужно обеспечить слой примерно в 15 нанометров, иначе распад будет поглощаться внутри самого материала. А неэффективно тратить столь дорогой изотоп, конечно, нельзя. Реакция порой идёт совершенно непредсказуемо и зависит от мелочей вплоть до тряпки, которой протирали стол. Иван показывает на экране чёрно-белые пирамидки. Проверять правильность нанесения приходится с помощью атомно-силового микроскопа, который позволяет контролировать работу с точностью почти до атома.
Мощность - 60 микроватт. Для сравнения: чтобы обеспечить энергией обычную лампочку, понадобится примерно десять миллионов таких устройств.
Правда, решение это не для слабонервных. В качестве источника энергии американские инженеры предлагают использовать переработанные ядерные отходы, а именно радиоактивный углерод-14. Выращенные в лаборатории синтетические алмазы являются самым теплопроводящим материалом в мире, они не пропускают радиацию и в 12 раз прочнее нержавеющей стали. Поэтому носить в кармане портативный Чернобыль должно быть безопасно для здоровья.
Во всяком случае так утверждают разработчики. При этом главный козырь ядерной батарейки заключается в том, что согласно расчетам, она будет работать в течение 28 тысяч лет!
Появился проект вечной квантовой батарейки
Например, на космических аппаратах "Пионер" и "Вояджер" установлены вполне компактные энергетические установки, работающие на изотопе плутония. Благодаря им эти аппараты смогли покинуть пределы Солнечной системы и продолжают свой путь во Вселенной. Другой вариант использования энергии распада изотопа - новая технология под названием бетавольтаика. Как она работает? В результате бета-распада ядро изотопа выбрасывает электрон и антинейтрино либо - реже - позитрон и нейтрино излучение попадает в полупроводник, который преобразует его в электрический ток. Аналогичным образом устроена солнечная батарея, только здесь вместо фотонов от Солнца улавливается электрон от изотопа.
Почему бетавольтаика так перспективна? Она даёт энергию долго - десятилетиями. Не требует обслуживания. Да, у такой батарейки низкая мощность, но зато высокая энергоёмкость. И тут не нужны тяжёлые радиоактивные изотопы вроде плутония.
Бета-распад куда более невинен. Как получить тяжёлый никель Патент на бетавольтаику был получен ещё в 1957 году, но реализовать его удалось только сейчас. Одно дело теория, другое - реально работающий гаджет. Сначала ориентировались на сверхтяжёлый водород - тритий. Но его тяжело загнать в твёрдое состояние, а работать с радиоактивным газом как-то не хочется, - объясняет один из авторов проекта, аспирант химического факультета МГУ им.
Ломоносова Иван Харитонов. В итоге остановились на никеле-63.
Пригодные для использования в массовой электронике портативные прототипы атомных бета-гальванических батарей безуспешно пытаются создать в США, России и не только. Они безопасны, но достаточной для работы тех же смартфонов мощности ещё никто из разработчиков не выжал. Китайская Betavolt тоже этого не сделала и обещает революцию завтра, а не сегодня. Хотелось бы в это верить. В основе атомной батарейки Betavolt используется изотоп никель-63 и алмазные полупроводники. В процессе радиоактивного распада он превращается в изотоп медь-64.
Разработка представляет собой специальный […] Американский стартап Nano Diamond Battery представил прототип бета-гальванической батареи, которая способна проработать тысячи лет. Разработка представляет собой специальный корпус из синтетических алмазов, внутрь которого помещен радиоактивный сердечник. В процессе неупругого рассеивания бета-излучение изотопов преобразуется в электрический ток. В качестве топлива используются переработанные ядерные отходы углерода-14. Этот изотоп применяется для радиоизотопного датирования и диагностики некоторых заболеваний желудочно-кишечного тракта. Он также накапливается в графитовых деталях ядерных реакторов, которые поглощают излучение ядерных топливных стержней. Хранить такие отходы опасно, дорого и трудно. Батареи на углероде-14 решают сразу две проблемы — недолговечность обычных элементов питания и переработки радиоактивных отходов. В Nano Diamond Battery отмечают, что батарейки безопасны для человека и окружающей среды.
По замыслу это даст возможность пожизненной имплантации устройства. Биотопливные генераторы, работающие на глюкозе, исследуются в десятках лабораторий по всему миру, хотя до внедрения дело пока не дошло. Новое слово Курчатовского института — материалы. Анод генератора сделан из полимерного гидрогеля и по своим механическим свойствам похож на стенку сосуда.
Информация
- Вечная энергия: американская студентка нечаянно изобрела "вечную" батарейку
- Стартап NDB сообщает о прорыве в области бесконечных батарей
- Российские учёные сделали диагностику когнитивных нарушений более точной и быстрой
- Почему ядерные батарейки так и не стали популярны? История почти забытой технологии
Самарские ученые разработали «вечную» батарейку со сроком службы 100 лет
Фото: Nano Diamond Battery Тесты, проведенные в Ливерморской национальной лаборатории имени Лоуренса и Кавендишской лаборатории Кембриджского университета, подтвердили, что атомная батарейка безопасна для человека и окружающей среды: радиационный фон вокруг нее остается в норме. А алмазная оболочка выполняет дополнительную функцию — защищает устройство от возможных повреждений. По их заверениям, энергоэффективность атомных батареек настолько высока, что их можно ставить в пару с литиевыми аккумуляторами — и Nano Diamond Battery будет не только питать устройство, но еще и подзаряжать аккумулятор. По заявлениям представителей стартапа, с двумя компаниями уже заключены предварительные контракты на поставку атомных батарей, правда, названия этих компаний пока держатся в тайне. Если предположить, что все действительно обстоит именно так, как нам обещают, то на горизонте маячит событие невероятного, глобального масштаба: полный переворот всей энергетики человечества. В самом деле: абсолютно все конечные устройства, потребляющие электричество, — смартфоны, компьютеры, кардиостимуляторы, телевизоры, стиральные машины, автомобили, станки, космические корабли и что еще можно придумать — перестанут нуждаться во внешнем питании на ближайшие 28 тысяч лет. Электростанции станут никому не нужны, линии электропередачи будут заброшены, все розетки демонтированы, а в каждой лампочке появится собственный источник электричества, которого хватит примерно на тысячу человеческих поколений... Вам не кажется, что заявление NDB звучит как минимум несколько самонадеянно?
Десятилетие науки и технологий в России Российская наука стремительно развивается.
Одна из задач Десятилетия — рассказать, какими научными именами и достижениями может гордиться наша страна. В течение всего Десятилетия при поддержке государства будут проходить просветительские мероприятия с участием ведущих деятелей науки, запускаться образовательные платформы, конкурсы для всех желающих и многое другое.
Прибор работает за счёт окисления глюкозы и, в отличие от обычных батарей, не требует замены. Об этом сообщил ТГ-канал «Спецоперация Z».
Отметим, что эта микро-батарея может использоваться во всех имплантируемых медицинских устройствах.
Батарея работает, преобразуя энергию, выделяемую при распаде изотопов, в электричество. Первая ядерная батарея Betavolt может обеспечивать мощность 100 микроватт и напряжение 3 В, при размерах 15 x 15 x 5 кубических миллиметров. Компания заявила о планах по производству батареи мощностью 1 ватт к 2025 году.
Альтернативная энергетика
- В Курчатовском институте разработали «вечную» батарейку для кардиостимуляторов
- Информация
- Атомная батарейка: разработан прототип, способный держать зарядку тысячи лет
- В Курчатовском институте разработали «вечную» батарейку для кардиостимуляторов
- Советско-российские разработки. Вечная батарейка / Александр Эйпур
Ядерные батареи будущего
Новая батарейка преобразует энергию радиоактивного распада в электрическую и может использоваться для питания микроэлектронной аппаратуры. Для производства идеи данных атомных батареек будет использоваться радиоизотоп Никель-63. Тем не менее, до сих пор находятся энтузиасты, которые верят в светлое будущее батареек с радиоизотопами. Российские ученые разработали технологию "вечной" ядерной батарейки. Студентка из МФТИ Екатерина Вахницкая разработала вечную батарейку для кардиостимуляторов. «Вечная атомная батарейка». В 2020 году американский стартап Nano Diamond Battery представил прототип бета-гальванической батареи, которая потенциально может проработать.
Бесконечное мыло в Китае
- Советско-российские разработки. Вечная батарейка / Александр Эйпур
- Комментарии
- Случайное улучшение
- Российские ученые создали батарейку из плутония, которая может работать вечно
Ядерное питание: российские учёные создали атомную батарейку повышенной мощности
Украдено в России: китайцы создали «вечную батарейку» для электромобилей Главная беда любой электрической легковушки — необходимость постоянно подзаряжать ее аккумуляторы. 28 тысяч лет без подзарядки: как устроена батарейка на ядерном топливе и насколько она безопасна? Рассказываем о "вечных" технологиях. Датчики с «вечной» батарейкой могут широко применяться и при создании сложных механизмов, поскольку карбид кремния выдерживает температуру до 350 градусов.
Атомные батарейки и зарядка по Wi-Fi: будущее рынка сохранения энергии
Российские физики создали материал для "вечной" космической батарейки читайте также. Исследователи и учёные из Технического университета Вены изобрели аккумулятор принципиально нового типа. Стартап из Поднебесной Betavolt представил атомную батарейку, живущую без подзарядки 50 лет. Сотрудники НИЯУ МИФИ создали первый прототип атомной батарейки, способной работать до 80 лет без подзарядки.
Изобретена "вечная" батарейка
По их заверениям, энергоэффективность атомных батареек настолько высока, что их можно ставить в пару с литиевыми аккумуляторами – и Nano Diamond Battery будет не только питать. Новая технология позволяет создать батарейку со сроком службы более 100 лет. Действительно ли она безопасна для человека и будет ли производство батареек дорогим, рассказывает доцент кафедры радиохимии химического факультета МГУ Владимир Петров.