Автор пина:Katrine. Находите и прикалывайте свои пины в Pinterest! ПРОСТО ФРАКТАЛ. Фракталы в природе. Если изучить фрактальную геометрию природы, то наблюдая природные явления человек перестанет видеть хаос. Он увидит, насколько просты принципы развития и распределения в природе. Чтобы доказать свое утверждение, он вводит ключевое для теории фракталов понятие фрактальной размерности. Самым известным примером фракталов в природе является снежинка.
Фракталы в природе презентация - 97 фото
Задачи: знакомство с понятием, историей возникновения и исследованиями Б. Мандельброта, Г. Коха, В. Серпинского и др.
Основополагающий вопрос работы: показать, что математика не сухой, бездушный предмет, она может выражать духовный мир человека в отдельности и в обществе в целом. Предмет исследования: фрактальная геометрия. Объект исследования: фракталы в математике и в реальном мире.
Гипотеза: все, что существует в реальном мире, является фракталом. Актуальность заявленной темы определяется, в первую очередь, предметом исследования, в качестве которого выступает фрактальная геометрия. Ожидаемые результаты: в ходе работы, я смогу расширить свои знания в области математики, увидеть красоту фрактальной геометрии, начать работу по созданию своих фракталов.
Итог работы: создание собственных фракталов вручную и с помощью компьютерных технологий. Одна из причин заключается в её неспособности описать форму облака, горы, дерева или берега моря. Облака - это не сферы, горы - это не конусы, линии берега — это не окружности… Вплоть до XX века шло накопление данных о таких странных объектах, без какой-либо попытки их систематизировать.
Так было, пока за них не взялся Бенуа Мандельброт - отец современной фрактальной геометрии и слова «фрактал». Постепенно сопоставив факты, он пришёл к открытию нового направления в математике - фрактальной геометрии. Рисунок 1.
Создатель фракталов - Бенуа Мандельброт. Что же такое фрактал? Сам Мандельброт вывел слово fractal от латинского слова fractus, что означает разбитый поделенный на части.
И одно из определений фрактала - это геометрическая фигура, состоящая из частей и которая может быть поделена на части, каждая из которых будет представлять уменьшенную копию целого по крайней мере, приблизительно. Фракталы — это нечто гораздо большее, чем математический курьёз. Они дают чрезвычайно компактный способ описания объектов и процессов.
Если рассматривать эти объекты в различном масштабе, то постоянно обнаруживаются одни и те же фундаментальные элементы. Эти повторяющиеся закономерности определяют дробную, или фрактальную, размерность структуры. Фрактальная геометрия описывает природные формы изящнее и точнее, чем Еклидова геометрия.
Рисунок 2. Книга Мальдеброта. Фракталы — это прежде всего язык геометрии.
Однако их главные элементы недоступны непосредственному наблюдению. В этом отношении они принципиально отличаются от привычных объектов евклидовой геометрии, таких как прямая линия или окружность. Фракталы выражаются не в первичных геометрических формах, а в алгоритмах, наборах математических процедур.
Эти алгоритмы трансформируются в геометрические формы с помощью компьютера. Овладев языком фракталов, можно описать форму облака так же чётко и просто, как архитектор описывает здание с помощью чертежей, в которых применяется язык традиционной геометрии. Язык — это очень подходящая метафора для концепции, лежащей в основе фрактальной геометрии.
Буквы не несут в себе никакого смыслового значения до тех пор, пока они не соединены в слова. Точно так же евклидова геометрия состоит лишь из нескольких элементов прямая, окружность и т. Чтобы представить себе фрактал понаглядней рассмотрим пример, приведенный в книге Б.
Такие системы предсказуемы - именно потому мы знаем, что Солнце взойдет завтра, через год и через сто лет. Для определения будущего в этом случае достаточно знать уравнения движения и задать начальные условия. Небольшие изменения в значениях последних приведут лишь к несущественной ошибке в прогнозе. К другому типу относятся динамические системы, поведение которых неустойчиво, так что любые сколь угодно малые возмущения быстро в масштабе времени, характерном для этой системы приводят к кардинальному изменению траектории.
Как отметил Пуанкаре в своей работе "Наука и метод" 1908 , в неустойчивых системах "совершен но ничтожная причина, ускользающая от нас по своей малости, вызывает значительное действие, которое мы не можем предусмотреть. Предсказание становится невозможным, мы имеем перед собой явление случайное". Таким образом прогнозирование на длительные времена теряет всякий смысл. Пример с нелинейным колебательным контуром, рассмотренный выше, показывает, что хаотическое поведение с непредсказуемым будущим может иметь место даже в очень простых системах.
Реконструкция прошлого Итак, прогноз будущего не всегда возможен. А как обстоит дело с прошлым? Всегда ли можно реконструировать "предсказать", однозначно истолковать прошлое? Казалось бы, здесь проблем быть не должно.
Раз траектории удаляются одна от другой при движении вперед, они должны сближаться при движении назад. Так оно и есть. Однако направлений, по которым может происходить схождение или расхождение траекторий в фазовом пространстве, не одно, а несколько. При движении как вперед, так и назад траектории могут сближаться по одной части направлений, но расходиться по другой.
Прошлое "не предсказывается"? Бред какой-то! Ведь что-то уже произошло. Все известно...
Но давайте подумаем. Если бы с реконструкцией прошлого все было так просто, как тогда могло случиться, что для одних Николай II по-прежнему кровавый, а для других святой? И кто все-таки Сталин: гений или злодей? Отвлечемся пока от проблемы, насколько вольны они были принимать те или иные решения, насколько эти решения предопределялись обстоятельствами и каковы могли быть последствия альтернативных решений.
Рассмотрим исторический процесс как динамику некоторой гипотетической хаотической системы. Тогда при попытке реконструкции прошлого мы столкнемся с быстро увеличивающимся числом вариантов траекторий , отвечающих нынешнему состоянию системы. Только один из них соответствует реальному течению событий. Если выбрать не его, а какой-то другой, то получится уже искаженная "версия" истории.
На основании чего выбирается правильная траектория "версия"? Информация, на которую мы можем опереться, - совокупность имеющихся конкретных фактов. Траектории, несовместимые с ними, отбрасываются. В результате при наличии достаточного количества надежных фактов останется одна траектория, определяющая единственную версию истории.
Однако даже для недалекого прошлого траекторий может оказаться значительно больше, чем достоверных сведений, - тогда однозначная трактовка исторического процесса уже не может быть произведена. И все это при добросовестном и уважительном отношении к истории и к фактам. Теперь добавьте сюда пристрастия первичных источников, потерю части информации со временем, манипуляции с фактами на этапе интерпретации замалчивание одних, выпячивание других, фальсификация и др. И что интереснее всего, при необходимости те же самые интерпретаторы через некоторое время могут без труда утверждать противоположное.
Знакомая картина? Итак, динамическая природа "непредсказуемости" прошлого сходна с природой непредсказуемости будущего: неустойчивость траекторий динамической системы и быстрое нарастание числа возможных вариантов по мере удаления от точки отсчета. Чтобы реконстру ировать прошлое, кроме самой динамической системы нужна достаточная по количеству и надежная по качеству информация из этого прошлого. Следует отметить, что на разных участках исторического процесса степень его хаотичности различна и может даже падать до нуля ситуация, когда все существенное предопределено.
Естественно, что чем менее хаотична система, тем проще реконструируется ее прошлое. Управляем ли хаос? Хаос часто порождает жизнь. Адамс На первый взгляд природа хаоса исключает возможность управлять им.
В действительности все наоборот: неустойчивость траекторий хаотических систем делает их чрезвычайно чувствительными к управлению. Пусть, например, требуется перевести систему из одного состояния в другое переместить траекторию из одной точки фазового пространства в другую. Требуемый результат может быть получен в течение заданного времени путем одного или серии малозаметных, незначительных возмущений параметров системы. Каждое из них лишь слегка изменит траекторию, но через некоторое время накопление и экспоненциальное усиление малых возмущений приведут к существенной коррекции движения.
При этом траектория останется на том же хаотическом аттракторе. Таким образом, системы с хаосом демонстрируют одновременно и хорошую управляемость , и удивительную пластичность: чутко реагируя на внешние воздействия, они сохраняют тип движения. Как считают многие исследователи, именно комбинация этих двух свойств служит причиной того, что хаотическая динамика характерна для поведения многих систем живых организмов. Например, хаотический характер ритма сердца позволяет ему гибко реагировать на изменение физических и эмоциональных нагрузок, подстраиваясь под них.
Известно, что регуляризация сердечного ритма приводит через некоторое время к летальному исходу. Одна из причин заключается в том, что сердцу может не хватить "механической прочности" для того, чтобы скомпенсировать внешние возмущения. На самом деле ситуация более сложная. Упорядочение работы сердца служит индикатором снижения хаотичности и в других, связанных с ним системах.
Регулярность свидетель ствует об уменьшении сопротивляемости организма случайным воздействиям внешней среды, когда он уже не способен адекватно отследить изменения и достаточно гибко на них отреагировать. Очевидно, что подобной пластичностью и управляемостью должны обладать любые сложные системы, функционирующие в изменчивой среде. В этом залог их сохранности и успешной эволюции. От хаоса - к упорядоченности Как же обеспечивается целостность и устойчивость живых организмов и других сложных систем, если отдельные их части ведут себя хаотически?
Оказывается, кроме хаоса в сложных нелинейных системах возможно и противоположное явление, которое можно было бы назвать антихаосом. В том случае, если хаотические подсистемы связаны друг с другом, может произойти их спонтанное упорядочение "кристаллизация" , в результате чего они обретут черты единого целого. Простейший вариант такого упорядочения - хаотическая синхронизация , когда все связанные друг с другом подсистемы движутся хотя и хаотически, но одинаково, синхронно. Процессы хаотической синхронизации могут происходить не только в организме животных и человека, но и в более крупных структурах - биоценозах, общественных организациях, государствах, транспортных системах и др.
Чем определяется возможность синхронизации? Во-первых, поведением каждой отдельной подсистемы: чем она хаотичнее, "самостоятельнее" , тем труднее заставить ее "считаться" с другими элементами ансамбля. Во-вторых, суммарной силой связи между подсистемами: ее увеличение подавляет тенденцию к "самостоятельности" и может, в принципе, привести к упорядочению. При этом важно, чтобы связи были глобальными , то есть существовали не только между соседними, но и между отстоящими далеко друг от друга элементами.
В реальных системах, включающих большое число подсистем, связь осуществляется за счет материальных или информационных потоков. Чем они интенсивнее, тем больше шансов, что элементы будут вести себя согласованно, и наоборот. Например, в государстве роль связующих потоков играют транспорт, почта, телефонная связь и др. Поэтому повышение тарифов на эти услуги в том случае, когда оно приводит к уменьшению соответствующих потоков, ослабляет целостность государства и способствует его разрушению.
Из теории хаотической синхронизации следует, что согласованную работу отдельных частей сложной системы может обеспечивать один из ее элементов, называемый пейсмейке ром, или "ритмоводителем". Будучи связан односторонним образом со всеми компонентами системы, он "руководит" их движением, навязывая свой ритм. Если при этом сделать так, что отдельные подсистемы не будут связаны друг с другом, а только с пейсмейкером, - получим случай предельно централизованной системы. В государстве, например, роль "ритмоводителя" выполняет центральная власть и...
Сегодня это в особенности относится к электронным средствам массовой информации, поскольку по мобильности и общему информационному потоку они значительно превосходят остальные. Интуитивно понимая это, центральная власть старается держать СМИ под контролем, а также ограничивает влияние каждого из них в отдельности.
Существует одно свойство структуры, присущее всем перечисленным предметам: они самоподобны. От ветки, как и от ствола дерева, отходят отростки поменьше, от них — еще меньшие, и т. Похожим образом устроена и кровеносная система: от артерий отходят артериолы, а от них — мельчайшие капилляры, по которым кислород поступает в органы и ткани. Посмотрим на космические снимки морского побережья: мы увидим заливы и полуострова; взглянем на него же, но с высоты птичьего полета: нам будут видны бухты и мысы; теперь представим себе, что мы стоим на пляже и смотрим себе под ноги: всегда найдутся камешки, которые дальше выдаются в воду, чем остальные.
То есть береговая линия при увеличении масштаба остается похожей на саму себя. Это свойство объектов американский правда, выросший во Франции математик Бенуа Мандельброт назвал фрактальностью, а сами такие объекты — фракталами от латинского fractus — изломанный. С береговой линией, а точнее, с попыткой измерить ее длину, связана одна интересная история, которая легла в основу научной статьи Мандельброта, а также описана в его книге «Фрактальная геометрия природы».
Взятие интегралов по неспрямляемым кривым. Второе: у меня введены конкретные характеристики этих фракталов, они у меня называются «Показатели Марцинкевича» в честь польского математика Йозефа Марцинкевича, а не российского националиста. Эти показатели помогают лучше справляться с некоторыми краевыми задачами. До этого были либо несчитаемые характеристики, либо менее точные. Есть надежда, что в будущем мы переведем всю математику на рельсы неспрямляемых кривых, и это даст прибавку везде.
Это даст нам гораздо большую точность в любых расчетах. В обществе распространено мнение об отдаленности математической науки от реальности, от практики. Но это не так. Одно из самых главных, чему учат на мехмате — это построение и изучение математических моделей, моделей того, что нас окружает. А уж что вы будете делать с этими моделями — решать вам. Как говорится, пистолет дали — крутись. А на практике фрактальная геометрия оказывается полезной во многих областях. В первую очередь, в биотехнологиях.
Например, при диагностировании онкозаболеваний. Если фрактальная сетка сосудов в каком-то месте нарушена, то следует обратить туда внимание: почти наверняка именно этот участок выступит очагом болезни. Что касается окружающей среды. Как выяснили ученые, лес — это один большой фрактал. С помощью фрактальной геометрии можно бороться с исчезновением лесного массива на Земле, прогнозировать, как именно будет разрастаться молодой лес, выявить его слабые места. Это все можно сделать, лишь наблюдая за одним деревом как частью фрактала.
Фракталы в природе и в дизайне: сакральная геометрия повсюду
Это касается и феномена жизни. Как писал Роберт Чемберс в своей «Естественной истории мироздания» 1844 , жизнь «появлялась всюду и постоянно, когда только возникали благоприятные для того условия». Скажем, из всех планет Солнечной системы жизнь в ее развитых формах возникла только на Земле. На других планетах давление взаимодействий оказалось не столь результативным. Отбор отбору рознь Главным конкурентом автогенетической теории эволюции сегодня продолжает оставаться теория естественного отбора.
Отбор в ней — только один из трех компонентов естественного отбора, включающего в себя: 1 возникновение множества наследуемых малых случайных направленных «во все стороны» мутаций; 2 выживание наиболее адаптивных из этих мутаций в результате конкуренции особей и их взаимодействия со средой собственно отбор ; 3 накопление малых мутаций, выживающих на протяжении ряда поколений, в адаптивные признаки. Второй компонент, который часто некорректно отождествляют со всем естественным отбором, вполне реален, тогда как первый и третий реальности не отражают. Если бы Господь здесь это метафора положился только на естественный отбор, то никакой эволюции не происходило бы. Первый аргумент.
Темпы органической эволюции превосходят темпы эволюции неорганической среды, так что сама по себе адаптация к среде не могла бы двигать эволюцию органического мира. Второй аргумент. Появляющиеся в ходе эволюции все более сложные формы зачастую не превосходят по адаптированности старые, скажем, бактерии или лишайники, проявляющие чудеса выживаемости в самых невероятных условиях. Третий аргумент.
В ходе эволюционных изменений данный органический вид становится другим видом, репродуктивно обособленным от старого, который после того зачастую гибнет. Объяснить это адаптацией к среде старого вида невозможно. Четвертый аргумент. Позиции теории естественного отбора подрывает и возникшая в последние десятилетия эволюционная биология развития evo-devo.
Получаемые здесь результаты позволяют все увереннее утверждать, что органическая эволюция осуществляется посредством макромутаций, для появления которых оказывается достаточно изменений в нескольких и даже одном-двух генах. В научной литературе обсуждаются и другие аргументы против теории естественного отбора. Я знаю, что ничего не знаю Эти слова, обычно приписываемые Сократу, в полной мере могут быть отнесены к нашим представлениям о Вселенной. После открытия космического расширения стало понятно, что наблюдаемый мир ограничен для нас горизонтом видимости радиусом около 13,8 млрд световых лет.
Так как никакой сигнал не может распространяться быстрее света, а расширение началось около 13,8 млрд лет назад, то события, происходящие вне этой сферы, в принципе не могут нами наблюдаться. Весь не ограниченный горизонтом видимости материальный мир называют Вселенной, сферический же ее участок, находящийся в пределах горизонта видимости, то есть наблюдаемый нами мир, — Метагалактикой. Более строго нашей Метагалактикой было бы называть относительно компактную космическую макроструктуру, включающую в себя наблюдаемый нами мир и отделенную от других метагалактик во Вселенной расстояниями, многократно превышающими ее собственные размеры. Ниоткуда не следует, что размеры нашей Метагалактики совпадают с размерами наблюдаемого мира.
Радиус горизонта видимости определяется не законами формирования компактных космических макроструктур, а временем, прошедшим после начала наблюдаемого Большого взрыва. Размеры нашей Метагалактики могут существенно превышать размеры наблюдаемого мира. Из сказанного следует, что у космологии, изучающей Вселенную в целом, начисто отсутствует эмпирическая база. Редчайший или даже единственный случай в естественных науках.
Все наши утверждения о Вселенной носят гипотетический характер. Несмотря на это, космологи то и дело переносят результаты наблюдений на всю Вселенную, уверенно говоря о расширении Вселенной, Большом взрыве Вселенной и т. При этом они деликатно забывают сообщить, что всё это — экстраполяция, базирующаяся на гипотезе о макро однородности Вселенной. В такой Вселенной часть наша Метагалактика и на самом деле подобна целому Вселенной.
Каждое соцветие копируется точно таким же только меньше. Фото сделано снизу, чтобы разглядеть это во всей красе. Брокколи - хоть брокколи не так лихо геометрична, как романессу, но тоже фрактальна. Павлины - всем известны своим красочным оперением, в котором спрятаны сплошные фракталы. Ананас - необычный плод это есть, фактически, фрактал. Хоть он часто связывается с Гавайями, плод - уроженец южной Бразилии. Облака - Посмотрите в окно. Практически в любой момент вы можете увидеть фракталы на небе.
Прекрасная иллюстрация последовательности Фибоначчи. Молнии ужасают и пугают и одновременно восхищают своей красотой. Фракталы, созданные молнией, не произвольны и не регулярны. Романессу - особый вид брокколи, крестоцветный и вкусный двоюродный брат капусты - является особенно симметричным фракталом. Папоротник является хорошим примером фрактала среди флоры. Каждое соцветие копируется точно таким же только меньше. Фото сделано снизу, чтобы разглядеть это во всей красе. Брокколи - хоть брокколи не так лихо геометрична, как романессу, но тоже фрактальна.
То есть весь мир материи подчинён единым законам. По ним он живёт, развивается, преобразуется.
Это как прописанная программа. Например, Молекула ДНК или РНК у вирусов несёт в себе код — программу, согласно которой происходит развитие и функционирование живого организма. Одна маленькая молекула задаёт сложное многообразие форм и жизнедеятельности! При этом одна лишь клетка, по свойству голограммы, содержит информацию обо всём организме в целом. Из этого можно сделать вывод, что всё функционирует как единая программа. А наличие программы предполагает наличие программиста, то есть того, кто её прописал. И ни одно материальное существо или объект не может выйти за рамки этой системы или матрицы. Человек выгодно отличается от всего животного мира тем, что в нём есть духовная составляющая: Душа и Личность. Ещё совсем недавно, говоря «человек» подразумевалось лишь физическое тело. Теперь многие учёные соглашаются, что человек — это гораздо более сложная система.
Просто поместить человека в таблицу биологических видов было недостаточно, так как этим ограничивается процесс самопознания. Исконные знания позволяют говорить о человеке, как о духовном существе. Познание духовной природы открывает прекрасные возможности для каждого человека и для общества в целом. Ведь когда человек не знает о своей двойственной природе и возможности выбора между двумя этими началами, то им очень легко становится управлять. С рождения мозг человека настроен на волну животного начала и следовательно человек в своей жизни руководствуется инстинктами. А значит попадает под воздействие системы животного разума, и следовательно, в этот момент не отличается от муравья, который подчинен общему разуму муравейника и выполняет исключительно свою функцию. Но если муравей в муравейнике обладает достаточно высоким интеллектом, то у человека, находящегося на волне животного начала, в толпе таких же как и он, сознание вообще сужено до точки простых инстинктивных желаний и эмоций. Ведь цели для человека, находящегося в состоянии животного, система определяет не созидательные как допустим для муравья , а наоборот — разрушительные. Огромное выделение разрушительных эмоций, неосознанные поступки, зачастую крайне деструктивные для него и окружающих.
Фракталы: бесконечность внутри нас
Давай лучше рассмотрим дизайн фракталов в природе и науке, чтобы вернуть себе веру в волшебство. Давай удивимся этой безумной синхроничности. А ведь все фрактально повторяется в нашем материальном мире От гипнотических мистических фрактальных узоров невозможно оторваться Фракталы и их дизайн — неопознанные элементы науки Сложные и простые фракталы представляют собой самоподобные фигуры, дизайн которых при уменьшении масштаба повторяется. Геометрия таких фигур «прячется» в сосудистой системе человека, альвеол животного.
Присмотрись к извилинам морских берегов или контурам деревьев, облакам в небе или звездным галактикам — все это невероятное порождение хаотического движения мира или фракталы с их идеальной геометрией. Только взгляни на русла рек, созвездия, структуру вирусов, ДНК или атомов! Повторяющиеся самоподобные фигуры создают целые вселенные...
О примерах самоподобных множеств заговорили еще в XIX веке. Слово «фракталы» происходит от латинского fractus и переводится как дробный, ломаный. Его ввел математик Бенуа Мандельбротом в 1975 году, изучая сложные структуры, состоящие из частей, подобных целому.
Мандельброт указал, что свойство самоподобия кардинально отличает эти фигуры от других объектов точной науки и трудно укладывается сознании. Совершенный дизайн фигур обладает рядом свойств: сложные, постоянно повторяющиеся структуры основной фигуры геометрии круга, треугольника, квадрата увеличение масштаба фигуры всегда приводит к усложнению его структуры принцип дизайна фигуры — самоподобие, приближенное самоподобие или рекурсия метрическая размеренность даже при дроблении фигуры значительно превосходит топологическую фигуры фракталы не имеют конечной площади в графическом изложении, напоминают матрицу. Схожие фрактальные формы встречаются повсюду, от микро- до макромира Ищи фракталы в минералах, флоре и фауне, природных явлениях Фракталы в природе, науке, дизайне, it-сфере и даже философии — это яркий пример вечного непрерывного движения, становления и развития простых форм.
Фракталы становятся причиной встречающихся нам закономерностей. О том, что человечество использовало такие фигуры много веков назад, ни история, ни архитектура, ни изобразительное искусство не умалчивают. Трипольская культура, Древний Египет, календарь Майя , восточные узоры мандалы — все это принадлежит к сакральной геометрии.
Мандала со своей фрактальной структурой излучает гармонию Одежда с фрактальным кроем или принтами становится все более популярной Фракталы — дизайн космической фигуры Колоссальные фрактальные сооружения с четкими математическими пропорциями строились во времена Имхотепа, египетского фараона. Позже геометрию и дизайн фигуры перенял готический стиль Европы. Последнему даже удалось превратить собственное имя в бесконечные фракталы — Benoit B.
Секрет — в расшифровке сокращения «B» Benoit B. Геометрия и фракталы. Бесконечные фигуры часто используются в дизайне, художественном искусстве, архитектуре.
Снежинка Коха, Треугольник Серпинского, Кривая Леви, Дерево Пифагора и другие нашли применение в области фрактальных антенн для мобильных устройств.
О примерах самоподобных множеств заговорили еще в XIX веке. Слово «фракталы» происходит от латинского fractus и переводится как дробный, ломаный. Его ввел математик Бенуа Мандельбротом в 1975 году, изучая сложные структуры, состоящие из частей, подобных целому. Мандельброт указал, что свойство самоподобия кардинально отличает эти фигуры от других объектов точной науки и трудно укладывается сознании. Совершенный дизайн фигур обладает рядом свойств: сложные, постоянно повторяющиеся структуры основной фигуры геометрии круга, треугольника, квадрата увеличение масштаба фигуры всегда приводит к усложнению его структуры принцип дизайна фигуры — самоподобие, приближенное самоподобие или рекурсия метрическая размеренность даже при дроблении фигуры значительно превосходит топологическую фигуры фракталы не имеют конечной площади в графическом изложении, напоминают матрицу. Схожие фрактальные формы встречаются повсюду, от микро- до макромира Ищи фракталы в минералах, флоре и фауне, природных явлениях Фракталы в природе, науке, дизайне, it-сфере и даже философии — это яркий пример вечного непрерывного движения, становления и развития простых форм. Фракталы становятся причиной встречающихся нам закономерностей. О том, что человечество использовало такие фигуры много веков назад, ни история, ни архитектура, ни изобразительное искусство не умалчивают.
Трипольская культура, Древний Египет, календарь Майя , восточные узоры мандалы — все это принадлежит к сакральной геометрии. Мандала со своей фрактальной структурой излучает гармонию Одежда с фрактальным кроем или принтами становится все более популярной Фракталы — дизайн космической фигуры Колоссальные фрактальные сооружения с четкими математическими пропорциями строились во времена Имхотепа, египетского фараона. Позже геометрию и дизайн фигуры перенял готический стиль Европы. Последнему даже удалось превратить собственное имя в бесконечные фракталы — Benoit B. Секрет — в расшифровке сокращения «B» Benoit B. Геометрия и фракталы. Бесконечные фигуры часто используются в дизайне, художественном искусстве, архитектуре. Снежинка Коха, Треугольник Серпинского, Кривая Леви, Дерево Пифагора и другие нашли применение в области фрактальных антенн для мобильных устройств. Фигуры компактного размера обладают широким диапазоном действий.
Алгебраические фракталы. Он базируется на математических формулах, например, Мандельброта. Фигуры строятся с помощью комплексной динамики. Эти фигуры создают методом хаотичного изменения параметров, применяют дизайне, художестве. Изображения получаются природными, абстрактными. Такие фигуры нашли популярность в кинематографе, компьютерной графике, нейрографике дизайне при создании эффекта «плазмы» природы: молний, пламени, северного сияния, береговой линии и даже ионосферы.
Дело в том, что фрактальные структуры во многих случаях показывают высокую эффективность - очень эффективно организовать кровеносные сосуды в виде фрактальной сетки, например. Ну и добавлю еще одно соображение. Для сравнительно простых форм жизни, например, грибов или растений, фрактальная структура удобна еще одним своим свойством - самоподобием. Оно означает, что если в результате какого-либо события от, например, мицелия гриба будет оторвана большая часть, оставшаяся часть в целом будет подобна всему большому организму и будет функционировать. Конечно, это верно лишь для достаточно простых форм жизни. Все природные объекты строго математичны, так как созданы не людьми, а Богом.
При этом на разных уровнях организации материи, возникающих один за другим в ходе ее материи самоорганизации, начинают действовать все новые законы — физические, химические, биологические, социальные. Эволюция под давлением взаимодействий протекает тем успешнее, чем то позволяют обстоятельства. Это касается и феномена жизни. Как писал Роберт Чемберс в своей «Естественной истории мироздания» 1844 , жизнь «появлялась всюду и постоянно, когда только возникали благоприятные для того условия». Скажем, из всех планет Солнечной системы жизнь в ее развитых формах возникла только на Земле. На других планетах давление взаимодействий оказалось не столь результативным. Отбор отбору рознь Главным конкурентом автогенетической теории эволюции сегодня продолжает оставаться теория естественного отбора. Отбор в ней — только один из трех компонентов естественного отбора, включающего в себя: 1 возникновение множества наследуемых малых случайных направленных «во все стороны» мутаций; 2 выживание наиболее адаптивных из этих мутаций в результате конкуренции особей и их взаимодействия со средой собственно отбор ; 3 накопление малых мутаций, выживающих на протяжении ряда поколений, в адаптивные признаки. Второй компонент, который часто некорректно отождествляют со всем естественным отбором, вполне реален, тогда как первый и третий реальности не отражают. Если бы Господь здесь это метафора положился только на естественный отбор, то никакой эволюции не происходило бы. Первый аргумент. Темпы органической эволюции превосходят темпы эволюции неорганической среды, так что сама по себе адаптация к среде не могла бы двигать эволюцию органического мира. Второй аргумент. Появляющиеся в ходе эволюции все более сложные формы зачастую не превосходят по адаптированности старые, скажем, бактерии или лишайники, проявляющие чудеса выживаемости в самых невероятных условиях. Третий аргумент. В ходе эволюционных изменений данный органический вид становится другим видом, репродуктивно обособленным от старого, который после того зачастую гибнет. Объяснить это адаптацией к среде старого вида невозможно. Четвертый аргумент. Позиции теории естественного отбора подрывает и возникшая в последние десятилетия эволюционная биология развития evo-devo. Получаемые здесь результаты позволяют все увереннее утверждать, что органическая эволюция осуществляется посредством макромутаций, для появления которых оказывается достаточно изменений в нескольких и даже одном-двух генах. В научной литературе обсуждаются и другие аргументы против теории естественного отбора. Я знаю, что ничего не знаю Эти слова, обычно приписываемые Сократу, в полной мере могут быть отнесены к нашим представлениям о Вселенной. После открытия космического расширения стало понятно, что наблюдаемый мир ограничен для нас горизонтом видимости радиусом около 13,8 млрд световых лет. Так как никакой сигнал не может распространяться быстрее света, а расширение началось около 13,8 млрд лет назад, то события, происходящие вне этой сферы, в принципе не могут нами наблюдаться. Весь не ограниченный горизонтом видимости материальный мир называют Вселенной, сферический же ее участок, находящийся в пределах горизонта видимости, то есть наблюдаемый нами мир, — Метагалактикой. Более строго нашей Метагалактикой было бы называть относительно компактную космическую макроструктуру, включающую в себя наблюдаемый нами мир и отделенную от других метагалактик во Вселенной расстояниями, многократно превышающими ее собственные размеры. Ниоткуда не следует, что размеры нашей Метагалактики совпадают с размерами наблюдаемого мира. Радиус горизонта видимости определяется не законами формирования компактных космических макроструктур, а временем, прошедшим после начала наблюдаемого Большого взрыва. Размеры нашей Метагалактики могут существенно превышать размеры наблюдаемого мира. Из сказанного следует, что у космологии, изучающей Вселенную в целом, начисто отсутствует эмпирическая база. Редчайший или даже единственный случай в естественных науках. Все наши утверждения о Вселенной носят гипотетический характер. Несмотря на это, космологи то и дело переносят результаты наблюдений на всю Вселенную, уверенно говоря о расширении Вселенной, Большом взрыве Вселенной и т.
Любопытные фото природы, которые успокоят
Математики, однако, пренебрегли этим вызовом и предпочли все больше и больше отдаляться от природы, изобретая теории, которые не соответствуют ничему из того, что можно увидеть или почувствовать". Все, что существует в реальном мире, является фракталом — это и есть наша гипотеза, а цель данной работы показать, что математика не бездушный предмет, она может выражать духовный мир человека в отдельности и в обществе в целом. Объектом исследования выступают фракталы в математике и в реальном мире. В процессе работы нами были выделены следующие задачи исследования: Проанализировать и проработать литературу по теме исследования. Рассмотреть и изучить различные виды фракталов.
Дать представление о фракталах, встречающихся в нашей жизни. Актуальность заявленной темы определяется, в первую очередь, предметом исследования, в качестве которого выступает фрактальная геометрия. Структура исследовательской работы определялась логикой исследования и поставленными задачами. Она включает в себя введение, две главы, заключение, список использованной литературы, приложения.
История появления понятия «фрактал» Первые идеи фрактальной геометрии возникли в 19 веке. Георг Кантор Cantor, 1845-1918 - немецкий математик, логик, теолог, создатель теории бесконечных множеств, с помощью простой рекурсивной повторяющейся процедуры превратил линию в набор несвязанных точек. Он брал линию и удалял центральную треть и после этого повторял то же самое с оставшимися отрезками. Получалась, так называемая, Пыль Кантора приложения 1, 2.
Джузеппе Пеано Giuseppe Peano; 1858-1932 — итальянский математик изобразил особую линию. Он брал прямую и заменял ее на 9 отрезков длинной в 3 раза меньшей, чем длина исходной линии. Далее он делал то же самое с каждым отрезком. И так до бесконечности.
Уникальность такой линии в том, что она заполняет всю плоскость. Позднее аналогичное построение было осуществлено в трехмерном пространстве приложения 3, 4. Само слово «фрактал» появилось благодаря гениальному ученому Бенуа Мандельброту приложение 5. Он сам придумал этот термин в семидесятых годах прошлого века, позаимствовав слово fractus из латыни, где оно буквально означает «ломанный» или «дробленный».
Что же это такое? Сегодня под словом «фрактал» чаще всего принято подразумевать графическое изображение структуры, которая в более крупном масштабе подобна сама себе. Определение фрактала, данное Мандельбротом, звучит так: «Фракталом называется структура, состоящая из частей, которые в каком-то смысле подобны целому».
Фрактальную природу имеют многие структуры в природе, они нашли применение в науке и технике. Фрактал — термин, означающий геометрическую фигуру, обладающую свойством самоподобия, то есть составленную из нескольких частей, каждая из которых подобна всей фигуре целиком.
Интересный факт: при визуальном поиске глаз человека вычерчивает фрактальную траекторию! Возьмём физическое тело человека целиком. Наблюдая за ростом и развитием его от рождения до смерти, мы сможем увидеть различные масштабные копии одного объекта. Тело человека претерпевает изменения подобно нелинейному динамическому фракталу. Развитие человеческого тела.
Процесс динамического фрактала Комплексный подход В прошлом веке появилась и закрепилась тенденция на разделение целостной когда-то науки на узкие направления. Научный язык усложнился, учёные всё меньше слышат друг друга, углубляясь в свои специализации. Однако сейчас уже мы понимаем, что весь мир живой и неживой природы подчиняется одним закономерностям: от развития колоний бактерий до распределения небесных тел в космическом пространстве. Это понимание позволяет нам увидеть более целостную картину мира, открыть взаимосвязь разрозненных, казалось бы объектов, понять причинно-следственные связи. Несомненно комплексным должен быть подход и к здоровью человека. Узкая специализация врачей зачастую не позволяет лечить человека как единый организм. Но человек имеет более сложное строение: то, что видимо глазу — тело и энергетическую конструкцию, которая не видна обычным зрением. Зная об энергетической конструкции , о её взаимосвязи с телом, мы сможем найти целостный подход к профилактике и лечению, раскрыть неиспользуемый потенциал. Простой пример: известный всем эффект «плацебо» основан на силе веры самого человека. Другими словами, просто переключив внимание с негатива на мысли о выздоровлении, человек изменяет настройки своего организма.
Состояние духа больного, его доверие или недоверие врачу, глубина его веры и надежды на исцеление или, наоборот, психическая депрессия, вызванная неосторожными разговорами врачей в присутствии больного о серьезности его болезни, глубоко определяют исход болезни. Психотерапия, состоящая в словесном, вернее, духовном воздействии врача на больного — общепризнанный, часто дающий прекрасные результаты метод лечения многих болезней». Новых Заключение Становится очевидным, что фрактальность присуща всей живой и неживой природе, в том числе и телу человеку, как части материального мира. То есть весь мир материи подчинён единым законам. По ним он живёт, развивается, преобразуется. Это как прописанная программа.
Еще одна характеристика фракталов заключается в том, что они демонстрируют большую сложность, обусловленную простотой - некоторые из самых сложных и красивых фракталов можно создать с помощью уравнения, состоящего всего из нескольких членов. Подробнее об этом позже. В природе Множество Мандельброта Одна из вещей, которые привлекли меня к фракталам, это их повсеместное распространение в природе. Законы, управляющие созданием фракталов, похоже, встречаются во всем мире природы.
Откройте свой Мир!
К ним можно отнести следующие: множество Кантора — нигде не плотное несчётное совершённое множество. Модифицировав процедуру, можно также получить нигде не плотное множество положительной длины; треугольник Серпинского «скатерть» и ковёр Серпинского — аналоги множества Кантора на плоскости; губка Менгера — аналог ковра Серпинского в трёхмерном пространстве; Ковёр Аполлония — множество всевозможных последовательностей окружностей, каждая из которых касается трёх уже построенных; примеры Вейерштрасса и Ван дер Вардена нигде не дифференцируемой непрерывной функции ; кривая Коха — несамопересекающаяся непрерывная кривая бесконечной длины, не имеющая касательной ни в одной точке; кривая Пеано — непрерывная кривая, проходящая через все точки квадрата; траектория броуновской частицы также с вероятностью 1 нигде не дифференцируема. Её хаусдорфова размерность равна двум [3]. Построение кривой Коха Существует простая рекурсивная процедура получения фрактальных кривых на плоскости.
Зададим произвольную ломаную с конечным числом звеньев, называемую генератором.
Пифагор рассматривал закономерности в природе, так же, как и гармонии в музыке, берущими начало из числа, как первоначала всего сущего. Эмпедокл в какой-то степени предвосхитил эволюционное объяснение структуры организмов Дарвина. В 1202 году Леонардо Фибоначчи открыл последовательность чисел Фибоначчи западному миру в своей «Книге абака». Фибоначчи привел несуществующий биологический пример численного роста теоретической популяции кроликов. В 1917 году Дарси Томпсон 1860—1948 опубликовал свою книгу «О росте и форме».
Его описание взаимосвязи филлотаксиса расположения листьев на стебле растения и чисел Фибоначчи математическое отношение закономерностей спирального роста в растениях стало классическим. Он показал, что простые уравнения могут описать все с виду сложные закономерности спирального роста рогов животных и раковин моллюсков. Тюринг, Плато, Геккель, Цейзинг — знаменитые деятели искусства и науки — искали строгие законы математики и находили ее в красоте природы. Спираль Фибоначчи — геометрическая прогрессия красоты Спирали распространены среди растений и некоторых животных, особенно среди моллюсков. Например, у моллюсков-наутилид каждая ячейка их раковины — примерная копия следующей, масштабированная константой и выложенная в логарифмическую спираль. Чаще всего в природе встречается последовательность Фибоначчи.
Она начинается с чисел 1 и 1, а затем каждое последующее число получается путем сложения двух предыдущих чисел. Спирали в растениях наблюдаются в расположении листьев на стебле, а также в структуре бутона и семян цветка — например, у подсолнуха или структуры плода ананаса и салака. Последовательность Фибоначчи можно заметить и у сосновой шишки, где огромное количество спиралей расположено по часовой и против часовой стрелки. Эти механизмы объясняются по-разному — математикой, физикой, химией, биологией. Каждое из объяснений верно само по себе, но необходимо учитывать их все. С точки зрения физики, спирали — конфигураций низких энергий, которые возникают спонтанно путем самоорганизации процессов в динамических системах.
К примеру, индуистские храмы обладают схожими друг на друга структурами. В их дизайне некоторые части напоминают концепт в целом. Согласно индуистской космологии, центральная башня зачастую олицетворяет бога Шиву, а подобные меньшие — бесконечные повторы вселенной. Не страшно разгадать глубинные секреты Вселенной? Дизайн фракталов также имеет схема линий парижского метрополитена, индийская мандала , соборы и храмы и природные объекты. Дизайн повторяющихся фрагментов отражается в общем облике здания и отдельно взятых деталях фасада. Наиболее чаще они встречаются в западной и отечественной архитектурах: исторический музей в Москве, древние индийские и ацтекские ступенчатые храмы, многофункциональный комплекс Federation Square в Мельбурне, мексиканский бутик Liverpool Insurgentes и другие. Фракталы прячутся в простых вещах: цветной капусте, суккулентах, кактусах Их изучение развивает множество сфер: от астрономической, социальной до IT и точных наук Фракталы в IT-сфере и литературе — что общего? Фракталы и их геометрия незаметно перебралась в технологический мир.
Из природы он в передовые 3D иллюстрации, компьютерную графику, децентрализованные сети. К примеру, компания Netsukuku использует принцип фрактального сжатия информации для IP-адресов. Каждый новый узел состыковывается с общей сети без использования центрального сервера. Удобно же! Ты удивишься, но молния, ионосфера, северное сияние и пламя — тоже фракталы Легче всего такие фигуры описать художникам Фракталы используются также в цифровой области. Теперь не нужно отдельно рисовать детали графических объектов. Фракталы и их алгоритмы задают первоначальные параметры, а остальную работу делает компьютерная система. Айтишники безустанно креативят с двух- и трехмерными геометрическими фигурами для создания объемных текстур. Есть что-то магическое в любой фрактальной форме Одни их замечают, другие проходят мимо В настоящее время математические фракталы активно используются в нанотехнологиях, у трейдеров, экономистов.
Они помогают анализировать курс фондовых бирж, торгового рынка. Область нефтехимии применяет фигуры фракталы для создания пористых материалов, а биологии — для развития популяций, генной инженерии. Люди зашли еще дальше, «скрестив» фрактальную геометрию с текстуальной, структурной и семантической природой. Смотри, как каждый фрагмент точно дублируется в уменьшающемся масштабе! Фракталы в природе: ботаника что-то скрывает Фракталы и их геометрию всегда оберегала природа со своей богатой флорой и фауной.
Построение триадной кривой Коха Для получения другого фрактального объекта рис. Пусть образующим элементом будут два равных отрезка, соединенных под прямым углом. В нулевом поколении заменим единичный отрезок на этот образующий элемент так, чтобы угол был сверху. Можно сказать, что при такой замене происходит смещение середины звена. При построении следующих поколений выполняется правило: самое первое слева звено заменяется на образующий элемент так, чтобы середина звена смещалась влево от направления движения, а при замене следующих звеньев, направления смещения середин отрезков должны чередоваться. Предельная фрактальная кривая при n стремящемся к бесконечности называется драконом Хартера-Хейтуэя. Построение "дракона" Хартера-Хейтуэя Для построения треугольника Серпинского начальный элемент — треугольник со всеми внутренними точками. Образующий элемент исключает из него центральный треугольник. Фрактальное множество получается в пределе при бесконечно большом числе. Построение треугольника Серпинского Представленные примеры геометрических фракталов не являются единственными, существует огромное количество других, еще более сложных и интересных фракталов. Геометрические фракталы имеют огромное практическое значение. Применяя их в компьютерной графике, ученые научились получать сложные объекты, похожие на природные: изображения снежинок, горных вершин, искусственных облаков, деревьев, кустов, веток, береговой линии и так далее. Двухмерные геометрические фракталы используются для создания объемных текстур. Алгебраические фракталы Эти фракталы могут быть описаны с помощью алгебраических уравнений или рекурсивных формул. Эти уравнения и формулы определяют правила, по которым точки или фигуры повторяются и изменяются на каждой итерации. Алгебраические фракталы могут иметь сложную и красивую геометрию, которая может быть воспроизведена и визуализирована с помощью компьютерной графики. Они могут быть двухмерными или трехмерными, и их формы могут быть симметричными или случайными. Алгебраические фракталы имеют множество применений в различных областях, включая компьютерную графику, науку, искусство и дизайн. Они могут быть использованы для создания красивых и сложных изображений, моделирования природных явлений, анализа данных и многого другого. Почему мнимой? Комплексные числа можно складывать, вычитать, умножать, делить, возводить в степень и извлекать корень, нельзя только их сравнивать. Комплексное число можно изобразить как точку на плоскости, у которой координата х - это действительная часть a, а y - это коэффициент при мнимой части b. Расчет данной функции продолжается до выполнения определенного условия. И когда это условие выполнится - на экран выводится точка определенного цвета. Результатом оказывается странная фигура, в которой прямые линии переходят в кривые, появляются, хотя и не без деформаций, эффекты самоподобия на различных масштабных уровнях.
Фракталы в природе.
Фракталы вокруг нас | Открытие молекулярного фрактала в цианобактерии – это не просто научная сенсация, но и философский повод задуматься о роли случайности в возникновении порядка, о сложном взаимодействии хаоса и гармонии в природе. |
Удивительный мир фракталов | Фрактальная геометрия природы. |
Фрактал. 5 вопросов | Найдите нужное среди 30 986 стоковых фото, картинок и изображений роялти-фри на тему «Fractals In Nature» на iStock. |
Фрактал. 5 вопросов
Если изучить фрактальную геометрию природы, то наблюдая природные явления человек перестанет видеть хаос. Он увидит, насколько просты принципы развития и распределения в природе. Фрактальную природу имеют многие структуры в природе, они нашли применение в науке и технике. Фрактал — термин, означающий геометрическую ф Смотрите видео онлайн «Фракталы. Открытие молекулярного фрактала в цианобактерии – это не просто научная сенсация, но и философский повод задуматься о роли случайности в возникновении порядка, о сложном взаимодействии хаоса и гармонии в природе. Как вам, например, такая фраза: «Фрактал – это множество, обладающее дробной хаусдорфовой размерностью, которая больше топологической». Просмотрите доску «Фракталы» пользователя Katrine в Pinterest. Посмотрите больше идей на темы «фракталы, природа, закономерности в природе».
Фракталы: что это такое и какие они бывают
Фрактальные узоры в природе и искусстве эстетичны и снимают стресс | Фрактальную природу имеют многие структуры в природе, они нашли применение в науке и технике. |
Фракталы: что это такое, какими они бывают и где они применяются / Skillbox Media | Термин «фрактал» введён Бенуа Мандельбротом в 1975 году и получил широкую известность с выходом в 1977 году его книги «Фрактальная геометрия природы». |
Математика в природе: самые красивые закономерности в окружающем мире | Международная группа ученых обнаружила первую в природе молекулу, которая является регулярным фракталом. |
Математика в природе: самые красивые закономерности в окружающем мире | Эволюция знает, как порадовать любителей фракталов и симметрии – 88 фотографий Образец, Флора, Композиция, Закономерности В Природе, Настенные Росписи, Макросъемки, Листья. |
Прибыльная торговля с помощью фрактальности существует?
чудо природы, с которым я предлагаю вам познакомиться. В природе мы встречаем фракталы в изломах береговой линии, ветвях деревьев, прожилках листьев. Фрактальные модели в природе и технике Текст научной статьи по специальности «Математика». В природе мы встречаем фракталы в изломах береговой линии, ветвях деревьев, прожилках листьев.
Фракталы в природе
Фракталы — еще одна интересная математическая форма, которую каждый видели в природе. чудо природы, с которым я предлагаю вам познакомиться. Фото: Фракталы в природе молния.
9 Удивительных фракталов, найденных в природе
О природе ков Виталий7 (Высоцкий В С.). Это и есть яркое проявление фрактальной геометрии в природе. Для фрактальной бесконечной Вселенной с ее нулевой средней плотностью такой проблемы не существует. Фракталы как узоры и формы, повторяющие себя в разных масштабах, находим в живой и неживой природе.