Новости миллисекундный пульсар

Миллисекундные пульсары (MSP) – это пульсары с периодами вращения менее 30 миллисекунд. Быстро вращающиеся миллисекундные пульсары резко замедляют свое вращение при смерти звезды-компаньона. Специалисты из Института космических исследований Российской академии наук сообщили, что этот источник оказался миллисекундным пульсаром в двойной звездной системе. и радиоизлучения оказался миллисекундный пульсар, получивший кодовое имя J1823-3021A.

Китайские астрономы нашли древнейший пульсар во Вселенной

Астрономы изучили миллисекундный пульсар-«красноспинник» PSR J1023+0038, предположив, почему образуются оптические и рентгеновские пульсации. говорит Чемпион. С использованием радиотелескопа MeerKAT в Южной Африке международная группа астрономов обнаружила три новых миллисекундных пульсара в шаровом скоплении Messier.

Открыт редкий миллисекундный пульсар

А тем временем 3 января Земле предстоит максимально сблизиться с Солнцем. Об опасности, которую представляет это явление, Лайф рассказывал ранее.

Миллисекундными пульсарами ученые называют быстро вращающиеся менее десяти миллисекунд нейтронные звезды, которые испускают сильное электромагнитное излучение. Обнаруженный пульсар имеет период вращения около 1,83 миллисекунды, а орбитальный период составляет почти 1,2 дня. Астрономы предположили, что масса светила примерно 1,4 веса Солнца.

Миллисекундные пульсары любимы учёными — они выступают идеальной «лабораторией» для изучения материи в экстремальных условиях. Также у них часто есть орбитальные спутники. В некоторых системах миллисекундный пульсар и звезда-компаньон находятся на расстоянии, сравнимом с расстоянием между Землей и Луной, и сильно взаимодействуют друг с другом.

Излучение пульсара может привести к тому, что материал звезды-компаньона будет сдуваться и разлетаться. Такой диффузный материал может затмить радиоимпульсы, излучаемые пульсаром.

Затем она начинает медленно пожирать изнутри нейтронное «тело» звезды, пока наконец не поглощает его целиком — превращаясь в «обычную» черную дыру звездной массы. К слову, нечто похожее, только в другом масштабе, астрономы уже недавно наблюдали.

Однако подтвердить или опровергнуть существование такого механизма в реальности, мягко говоря, сложно: определить по черной дыре, не «пообедала» ли она когда-то пульсаром, представляется невозможным. Одно ясно: полностью объяснить отсутствие миллисекундных нейтронных звезд в ядре Млечного Пути, по словам самих исследователей, эта версия не может. Но то, что астрономические наблюдения уже позволяют обнаруживать те же магнетары даже в других галактиках, дает надежду, что тайна пропавших пульсаров рано или поздно будет окончательно разгадана.

Веб-камера запечатлела облака на Марсе

  • Китайский радиотелескоп FAST открыл свой первый миллисекундный пульсар
  • Телескоп FAST обнаружил двойной миллисекундный пульсар
  • 12.11.2021 - Учёные обнаружили причину затмений пульсаров - Новости космоса
  • Астрономы сообщили об открытии сотен мёртвых звёзд, пульсирующих гамма-излучением
  • Последние новости
  • UfoSpace.net

Планета Х уничтожит Солнечную систему

  • arXiv: обнаружен миллисекундный пульсар в шаровом скоплении GLIMPSE-C01
  • Новости по теме
  • Китайский радиотелескоп FAST открыл свой первый миллисекундный пульсар
  • Астрономы обнаружили 300 новых пульсаров - последние новости на 02.12.2023

Обнаружен новый миллисекундный пульсар из двух нейтронных звезд

Астрофизиков очень интересует, каким образом эти режимы возникают и почему непредсказуемо меняются. В 2013 году он перешел в режим высокого уровня активности, демонстрируя признаки формирования аккреционного диска. Данные наблюдений позволили астрономам построить физическую модель переключения миллисекундного пульсара между режимами активности. Во время высокого уровня активности существует ударная волна между ветром от пульсара и внутренним аккреционным потоком, где возникает большая часть рентгеновского излучения, а также рентгеновские, ультрафиолетовые и оптические пульсации. При этом самая внутренняя область усеченного, геометрически тонкого аккреционного диска, заменяется радиационно неэффективным, геометрически толстым потоком, а падающее на пульсар вещество втягивается в магнитное поле и ускоряется, образуя компактный джет из плазмы, которая выбрасывается наружу.

Система имеет орбитальный период около 27 дней и эксцентриситет орбиты на уровне 0,134. Согласно их модели, нейтронная звезда имела начальную массу около 1,4 массы Солнца, а ее спутник был звездой главной последовательности примерно на 60 процентов массивнее Солнца. После этого двойная система с начальным орбитальным периодом около 2,59 суток превратилась в двойную рентгеновскую систему с низкой массой LMXB. Однако для подтверждения этого предположения необходимы дальнейшие исследования.

По доплеровскому сдвигу этой частоты удалось оценить и орбитальный период — примерно 5. Итого, уже за первые несколько дней удалось выяснить что новый источник — аккрецирующий миллисекундный пульсар в двойной системе с маломассивной звездой. Не остались в стороне от поисков и наземные телескопы, хотя им источник пока не показывается: ни радиотелескопу MeerKAT в ЮАР, ни наблюдателям на оптических телескопах Южного полушария SRGA J1444 расположен в созвездии Циркуля на южном небе увидеть его пока не удалось. Впрочем, он расположен вблизи плоскости Галактики, где пылевые облака существенно затрудняют наблюдения в видимом свете. Но поиски продолжаются, теперь слово за большими телескопами.

Исследователи отметили, что, хотя PSR J1431? Это связано с его коротким периодом вращения, широким профилем и высокой степенью дисперсии, что затрудняет его поиск с помощью традиционных методов.

Открытие PSR J1431? Комментарии: Еще нет комментариев, станьте первым коментатором!

Астрономы впервые поймали момент рождения миллисекундного пульсара

Нейтронная звезда начинает поглощать оболочку гиганта, что ускоряет ее вращение и уменьшает период импульсов и делает орбиту все более и более правильной. В конце концов от звезды-компаньона остается белый карлик, поглощение прекращается, система становится миллисекундным двойным пульсаром с круговой орбитой. Наиболее правдоподобный, по мнению Чемпиона, — предположение о существовании третьей звезды типа Солнца, находящейся довольно близко к двойной системе. Ее гравитационное притяжение делает орбиту вытянутой. По другой версии, формирование пульсара происходило в шаровом скоплении звезд, где на него могло оказать влияние гравитационное притяжение многочисленных соседних звезд.

Астрономы предполагают, что они образуются в бинарных системах, когда изначально более массивный объект превращается в нейтронную звезду, которая затем раскручивается за счет аккреции вещества со второй звезды. Группа астрономов под руководством Таши Гаутама из Института радиоастрономии имени Макса Планка в Бонне Германия , обнаружила еще один миллисекундный пульсар в рамках изучения данных, полученных с Гигантского метрового радиотелескопа uGMRT. Мы наблюдали восемь галактических кластеров и искали в каждом из них изолированные и бинарные пульсарные системы с помощью сегментированных и полноразмерных методов поиска. Результаты показывают, что PSR J1835-3259B является бинарной системой с широкой орбитой, но относительно небольшим эксцентриситетом. По оценкам астрономов, характерный возраст этой бинарной системы составляет не менее 430 миллионов лет, а напряженность ее поверхностного магнитного поля не превышает 350 миллионов Гаусс.

Исследователи провели поиск пульсаров в выборке из 97 шаровых скоплений. Новооткрытый пульсар, получивший обозначение GLIMPSE-C01A, имеет период вращения 19,78 миллисекунды и меру дисперсии, показывающей количество электронов в луче зрения между землей и пульсаром, в 491,1 парсек на кубический сантиметр. Характерный возраст этого пульсара оценивается в 100 миллионов лет.

Отправленная астрономическая телеграмма вызвала «цепную реакцию». Сначала, с некоторым удивлением, источник был обнаружен командой рентгеновского телескопа MAXI JAXA на Международной космической станции, причём выяснилось, что вспышка началась почти на неделю раньше — как минимум, 15 февраля, но была пропущена японскими коллегами. Дальше подтянулись более чувствительные рентгеновские телескопы и новости полились рекой. Такие всплески происходят в том случае, когда на поверхности нейтронной звезды накапливается достаточно много аккрецированного то есть перетёкшего с невырожденной звезды-компаньона вещества для того, чтобы зажечь термоядерную реакцию. Причём по продолжительности и скорости нарастания всплеска можно судить о химическом составе горящего вещества.

Выбросы плазмы связали с переключением уровней активности переходных миллисекундных пульсаров

Астрономы изучили миллисекундный пульсар-«красноспинник» PSR J1023+0038, предположив, почему образуются оптические и рентгеновские пульсации. Астрономы из Австралийской национальной обсерватории телескопов (ATNF) открыли новый миллисекундный пульсар. Миллисекундные пульсары (MSP) – это пульсары с периодами вращения менее 30 миллисекунд.

Аномальный пульсар оказался тройной системой

Уже за первые несколько дней удалось выяснить что новый источник — аккрецирующий миллисекундный пульсар в двойной системе с маломассивной звездой. «Этот быстрый и энергичный миллисекундный пульсар был впервые обнаружен как точечный источник. Также гамма-пульсары с импульсами миллисекундной длительности хорошо подходят для космической навигации. Также гамма-пульсары с импульсами миллисекундной длительности хорошо подходят для космической навигации. до 43000 оборотов в минуту. The most rapidly rotating pulsars, those with rotation periods below 30 milliseconds, are known as millisecond pulsars (MSPs).

"Ферми" обнаружил самый молодой миллисекундный пульсар

Не остались в стороне от поисков и наземные телескопы, хотя им источник пока не показывается: ни радиотелескопу MeerKAT в ЮАР, ни наблюдателям на оптических телескопах Южного полушария SRGA J1444 расположен в созвездии Циркуля на южном небе увидеть его пока не удалось. Впрочем, он расположен вблизи плоскости Галактики, где пылевые облака существенно затрудняют наблюдения в видимом свете. Но поиски продолжаются, теперь слово за большими телескопами. Павлинского, так как обнаружение пульсара удачно совпало с небольшим перерывом в обзоре всего неба. По данным российского инструмента подтверждены пульсации рентгеновского потока, и обнаружено, что источник перешёл в фазу «периодического барстера» англ.

Это, в свою очередь, означает, что миллисекундные пульсары возникают очень редко.

Они характерны для шаровых скоплений, где обычная нейтронная звезда может захватить другую звезду. Миллисекундные пульсары являются старыми пульсарами, хотя не все старые пульсары вращаются быстро. Одиночные старые пульсары, двойные пульсары, а также члены любых широких двойных систем не могут раскручиваться, и вращение их со временем только замедляется. Но природа второго процесса остаётся непонятной. Многие миллисекундные пульсары находятся в шаровых скоплениях.

Это согласуется с теорией их формирования путём раскрутки, так как чрезвычайно высокая плотность звёзд в этих скоплениях предполагает гораздо более высокую вероятность того, что пульсар будет иметь гигантскую звезду-компаньона или захватит её. В настоящее время известно около 130 миллисекундных пульсаров в шаровых скоплениях: Шаровое скопление Terzan 5 содержит 33 таких пульсара, 47 Тукана — 22, M28 и M15 по 8 пульсаров каждое. Миллисекундные пульсары испускают импульсы с очень высокой точностью, лучше, чем лучшие атомные часы. Это делает их очень чувствительными зондами. Например, всё, что вращается по орбите вокруг миллисекундных пульсаров, вызывает периодические доплеровские сдвиги их импульсов во времени, которые затем могут быть проанализированы, чтобы выявить наличие компаньона и с высокой точностью измерить орбиту и массу объекта.

Метод настолько чувствителен, что с его помощью можно обнаружить даже объекты размером с астероид , если они находятся на орбите миллисекундного пульсара. Эти планеты земной массы оставались в течение многих лет единственными объектами такого рода, известными за пределами нашей Солнечной системы. И один из них возможно, даже комета , с меньшей массой, сравнимой с массой нашей Луны , по сей день является объектом наименьшей массы, известным за пределами Солнечной системы. Связанные понятия Рентгеновский пульсар — космический источник переменного рентгеновского излучения, приходящего на Землю в виде периодически повторяющихся импульсов. Источник мягких повторяющихся гамма-всплесков является астрономическим объектом, который производит мощные всплески гамма-излучения и рентгеновских лучей с нерегулярной периодичностью.

Предполагается, что они являются одним из подтипов магнетаров или нейтронными звёздами с пылевыми дисками вокруг них.

Скорость его вращения составляет примерно 641 оборот в секунду, и на данный момент он остается вторым наиболее быстровращающимся миллисекундным пульсаром из примерно 340 известных. Изучение «раскрученных пульсаров» играет важную роль не только в понимании эволюции нейтронных звезд и физики конденсированного состояния материи, но и может быть использовано для обнаружения низкочастотных гравитационных волн. Аккреция вещества со звезды-компаньона на пульсар в представлении художника. Аккрецируемое вещество ускоряет вращение пульсара, делая его миллисекундным.

Пульсар был обнаружен с помощью телескопа Green Bank во время целенаправленного поиска оптического кандидата с красной спинкой GBT , совпадающего с источником гамма-излучения 3FGL J0212. Было измерено, что орбитальный период системы составляет почти 0,87 дня.

Похожие новости:

Оцените статью
Добавить комментарий