Новости реактор на быстрых нейтронах в россии

«Росатом» приступил к строительству в России атомного энергоблока с инновационным реактором на быстрых нейтронах БРЕСТ-ОД-300. Специальный модуль создает ядерное топливо, затем оно поступает в энергоблок «Брест-ОД-300» на быстрых нейтронах, а после переработки то же самое топливо возвращается обратно в реактор, и снова по кругу.

Росатом получил лицензию на производство ядерного топлива для «реактора будущего»

Россия продолжила работу с реакторами на быстрых нейтронах единственная в мире. Сообщается, что отечественные реакторы на быстрых нейтронах ранее загружались обычным урановым топливом, т. к. отрабатывали на них натриевые технологии. Реакторы на быстрых нейтронах способны нарабатывать плутоний, которого хватит, чтобы обеспечить собственную работу и при необходимости другие реакторы новым топливом. В России учёные-атомщики вывели реактор БН-800 на номинальную мощность с полной загрузкой инновационным, так называемым МОХ-топливом. Здесь были выдвинуты и реализованы идеи создания реакторов на быстрых нейтронах и реакторов с прямым преобразованием ядерной энергии в электрическую. Научно-техническая конференция «Развитие технологии реакторов на быстрых нейтронах с натриевым теплоносителем (БН-2023)».

Российские атомщики совершили «Прорыв» за всё человечество

Энергоблок №4 с реактором на быстрых нейтронах БН-800 (800 МВт) включен в энергосистему России и уже поставляет электроэнергию. Интерфакс: Реактор на быстрых нейтронах БРЕСТ-300 в Томской области может быть введен в 2028-2029 гг., сообщил глава госкорпорации "Росатом" Алексей Лихачев в интервью телеканалу "Россия-24". Эксперт Уваров: Россия сделала новый важный шаг к атомной энергетике будущего. «Росатом» начал возводить в Томской области уникальный реактор на быстрых нейтронах. С моей точки зрения именно реактор на быстрых нейтронах это самое значимое, что создала Россия после перестройки.

Ученые Росатома обсудили в Обнинске будущее развитие реакторов на быстрых нейтронах

По сути, реактор на быстрых нейтронах превратится в “перпетуум мобиле”. Более того, реакторы на быстрых нейтронах позволяют реализовать замкнутый топливный цикл, поскольку «сжигается» только уран-238, после переработки (извлечения продуктов деления и добавления новых порций урана-238) топливо можно вновь загружать в реактор. Внедрение замкнутого топливного цикла осуществляется прежде всего для реакторов на быстрых нейтронах, которые по своей физике изначально более «всеядны» с точки зрения топлива и делящихся материалов. Именно этот инновационный реактор на быстрых нейтронах стал настоящей мировой сенсацией, когда первым на планете целый год вырабатывал энергию на МОКС-топливе.

Российские ученые: Реактор БН-800 полностью переведен на МОКС-топливо

Хранение такого топлива — настоящая проблема для большинства стран мира. Но как может отработавшее топливо заново давать свет и электроэнергию? Это позволяет получать больше тепла и электричества, расходуя меньше топлива. Процесс получается более безопасным и контролируемым, а срок службы тепловыделяющих сборок, спрессованных на специальном заводе, фактически, из «ядерного мусора», увеличивается.

Не вышло у американцев и с военным использованием натриевых быстрых реакторов. Натрий бурно реагирует с водой и горит на воздухе, что усложняет любую аварию с утечкой теплоносителя. Поэтому после трехлетней эксплуатации единственной американской подлодки с натриевым теплоносителем USS Seawolf были сделаны отрицательные выводы о применимости такого типа реакторов в подводном флоте, на самой подлодке реактор был заменен на обычный водо-водяной, и эксперименты с использованием быстрых реакторов Пентагон прекратил. Однако из-за нескольких аварий его неоднократно останавливали, запускали снова, потом снова останавливали и окончательно заглушили в феврале 2010 года, так и не выведя на проектную мощность. В Японии быстрым реакторам не повезло: в 1995 году на реакторе «Мондзю» через четыре месяца после пуска произошла крупная утечка натрия. Потом 15 лет на АЭС шел ремонт, но при перезапуске снова произошла авария. С тех пор реактор не работает.

Индия имеет исследовательский быстрый реактор FTBR, но с пуском демонстрационного реактора PFBR-500 у индийцев не ладится уже много лет по причине отсутствия опыта и специалистов. Многочисленные отказы экспериментального оборудования ставят под вопрос реализацию этого проекта. Единственными серьезными конкурентами России в этой области сейчас являются китайцы, которые, однако, используют российское топливо с обогащенным ураном: они запустили экспериментальный реактор на быстрых нейтронах CEFR в 2011 году, а сейчас строят демонстрационный блок, который должен заработать в ближайшие годы. Первый китайский опытный реактор CEFR мощностью 65 мегаватт проектировался в 90-х годах в России, но строился китайцами самостоятельно. Пущенная в 2010 году эта установка стала для Китая своего рода полигоном, где нарабатывается понимание, каким образом строить и эксплуатировать быстрые натриевые реакторы. Однако с 2011 года и по сей день CEFR находится в полурабочем состоянии.

И это та технология, где мы пока недостижимы для всего остального мира", — заявил Иван Филин, первый заместитель главного инженера БАЭС. Инновационное горючее для атомных станций будущего создают на секретном предприятии, надежно укрытом в глубине сибирских скал.

Там оксиды урана и плутония обрабатывают и надежно спаивают в тепловыделяющие сборки. Затем контейнеры с готовыми изделиями доставляют на Урал и уже на атомной станции, словно батарейки, загружают в реактор. Реактор БН-800 — изделие экспериментальное и для мировой энергетики было своего рода вызовом. Теперь, когда стабильная работа на МОКС-топливе доказана, на основе уральской установки создадут серийное изделие БН-1200. Будущий флагман отечественной и мировой атомной энергетики. Второй момент — мы в десятки раз уменьшаем количество поступающего на хранение отработанного ядерного топлива и решаем проблему с утилизацией высокоактивных радиоактивных отходов", — заявил Валерий Шаманский, замглавного инженера БАЭС по безопасности и надежности.

Теперь отработанное топливо из других атомных электростанций можно не захоранивать, создавая зоны отчуждения и подвергая себя и будущие поколения огромному риску, а ещё раз использовать, соответствующим образом его переработав. В данном случае атом работает на благо человека и сможет снабжать потребителей дешёвой электроэнергией, не вредя при этом экологии. Успешно проведённые испытания реактора БН-800 на Белоярской АЭС подразумевают, что ядерная энергетика станет практически безотходной, поскольку будет базироваться на уране-238, объёмов которого хватит не на один миллион лет. Это будет машина по переработке всего сырьевого урана, который мы извлечём из земли. Он весь будет вовлечён в производство электроэнергии. Что в итоге? Мы придём к тому, что за счёт такой технологии сырьевая база российской атомной энергетики увеличится в 100 раз.

Что еще почитать

  • Энергия без границ
  • Реактор БН-800 проработал год на топливе из отработавшего ядерного топлива
  • Новый реактор
  • Что даст программа "Росатома" в ближайшей перспективе?

АО "ТВЭЛ" представило инновационные решения для замыкания ядерного топливного цикла

Несмотря на это, сегодня 10 реакторов типа РБМК-1000 все еще работают в России. Единственной страной кроме России, сумевшей запустить реактор на быстрых нейтронах промышленной мощности, оказалась Франция. Рассказываем, как устроены реакторы на быстрых нейтронах и почему они могут в корне изменить наше представление об энергетике.

Россия на пороге создания нового реактора на быстрых нейтронах

Это привело к значительному отставанию в их развитии и к тому, что пока что реакторы на быстрых нейтронах — это единичные и экспериментальные установки. Это отразилось еще на первом поколении реакторов на быстрых нейтронах, которые использовали в качестве теплоносителя жидкий натрий. А вот США, Франция и Япония, начав крупномасштабные эксперименты с реакторами на быстрых нейтронах с жидким натрием в то же время и даже раньше, сошли с дистанции, так и не добившись устойчивой работы этих сложных машин. Сейчас Россия, успешно освоив технологию жидкого натрия в реакторах на быстрых нейтронах, переходит к следующему поколению энергоблоков, использующих гораздо более безопасный и перспективный свинцовый теплоноситель. Это действительно энергетика будущего: пока доступность урана-235 еще не достигла критических для отрасли величин, но его запасы не бесконечны. Рано или поздно ядерная энергетика столкнется с дефицитом дешевого природного урана-235, и вот тогда реакторы типа БРЕСТ станут единственным выходом из такой сложной ситуации.

Сообщалось, что общий объем инвестиций в проект "Прорыв" по состоянию на сентябрь 2022 года оценивался в 240 млрд рублей. В СХК в конце прошлого года сообщали "Интерфаксу", что модель переработки отработавшего ядерного топлива будет введена в 2030 году.

Его успешная эксплуатация позволила накопить неоценимый опыт, который нашёл своё развитие в создании более мощных энергетических реакторов. Благодаря общему труду сегодня мы являемся лидирующей страной в области быстрых технологий». Он также зачитал поздравление от имени депутатов Государственной Думы Российской Федерации, адресованное коллективу Физико-энергетического института им. От имени администрации Обнинска к участникам обратился Глава городского самоуправления, Председатель Обнинского городского Собрания Геннадий Артемьев. Он подчеркнул, что вклад ученых Физико-энергетического института оказался решающим в этом историческом событии. Доктор физико-математических наук, профессор, президент ядерного общества Казахстана Владимир Школьник в своем выступлении отметил перспективность технологии быстрых реакторов и актуальность направления по выводу отработавших ядерных установок из эксплуатации. Сочетание быстрых и тепловых реакторов в организации замкнутого цикла и исследования тех лет остаются актуальными, и я очень рад, что в Физико-энергетическом институте данные работы продолжаются, так как они имеют важное значение для будущего развития атомной энергетики. Эту тему нужно продолжать.

Дизайном МБИР предусмотрено наличие трех независимых петель, которые могут использоваться для испытания различных теплоносителей газ, свинец, раствор солей и, соответственно, проведения материаловедческих исследований в данных средах. Срок ввода МБИРа в эксплуатацию в соответствии с федеральной программой — 2019 г. Мировая тенденция развития быстрых исследовательских реакторов показывает, что к 2025 г. МБИР можем стать единственной подобной установкой в мире. Максимальная плотность потока нейтронов 5. Предусматривается, что новая исследовательская ядерная установка будет иметь несколько независимых петель с автономным охлаждением, набор инструментованных ячеек в активной зоне, а также большое количество ячеек для размещения материаловедческих сборок. Технические характеристики МБИРа позволят решать широкий спектр задач, в том числе в области экспериментального обеспечения научно-исследовательских и опытно-конструкторских работ по созданию инновационных ядерно-энергетических установок нового поколения. Реактор позволит осуществлять отработку технологий замыкания топливного цикла и утилизации радиоактивных отходов, проводить комплексные исследования по радиационному материаловедению, включая создание новых конструкционных, топливных и поглощающих материалов, а также осуществлять комплексные экспериментальные работы с использованием нейтронного и других видов реакторных излучений для фундаментальных исследований. Мощность для исследовательского реактора не важна, но она прямо связана с нейтронным потоком, который и является главным инструментом исследований. А поток влияет на сроки набора дозы облучения — возможность провести эксперименты с облучением за три года вместо 10 лет безусловно важна для исследователей, и это и является главным преимуществом высокопоточного реактора, так же, как и возможность проведения экспериментов в более широком диапазоне температур.

Уникальный реактор обеспечит энергетическое будущее России

А сейчас данный плутоний вернули в реактор, впервые выведя его на номинальную мощность. Такой вид ядерного топлива называется МОКС-топливом. Это первый шаг к замыканию топливного цикла. После того как плутоний отработает, часть его сгорит, отдав энергию, а другая часть будет переработана, и из нее сделают новое топливо, которое вновь загрузят в реактор, уже в третий раз.

Фактически реактор на быстрых нейтронах превратится в «перпетуум мобиле». Это будет машина по переработке всего сырьевого урана, который извлекается из земли.

ЦАИР частного учреждения «Наука и инновации» был представлен доклад «История и перспективы развития зарубежных проектов реакторов с быстрым спектром нейтронов и натриевым теплоносителем», включающий анализ ретроспективы развития быстрых натриевых реакторов за рубежом, описание текущих зарубежных проектов реакторов типа БН и национальных программ поддержки их развития, а также результаты многокритериального сравнения данной технологии с другими инновационными реакторными системами.

В 1971 году президент США Ричард Никсон назвал эту технологию одним из высших приоритетов для научно-исследовательских работ страны. Первоначальная стоимость проекта оценивалась в 400 млн долларов. Однако в 1983 году из-за различных финансовых злоупотреблений «Клинч Ривер» был закрыт. К этому времени его стоимость оценивалась уже в 8 млрд долларов, причём предела роста расходов в обозримом будущем видно не было. Правительство благоразумно закрыло сию научно-техническую профанацию, справедливо посчитав, что она не имеет ни малейшего шанса на выход практически применимых и окупаемых технологий.

Японский реактор «Мондзю» с самого начала преследовали неудачи. В 1995 году на нём после утечки 640 килограммов металлического натрия произошёл грандиозный пожар. Когда после 14-летнего перерыва его вновь пытались запустить в работу, при перегрузке топлива в корпус реактора разрушился очень важный узел загрузочной машины. Сейчас финансирование реактора не производится и судьба его неизвестна. Единственной страной кроме России, сумевшей запустить реактор на быстрых нейтронах промышленной мощности, оказалась Франция. Реактор «Феникс» был подключён к сети в 1973 году. За время эксплуатации зафиксировано четыре случая внезапного резкого снижения реактивности реактора, то есть нарушения цепной реакции. Выяснить физику этого явления не удалось, что стало одной из причин отказа Франции от дальнейшего развития направления быстрых реакторов. Другой причиной стала невозможность получить от «Феникса» хоть какую-то экономическую эффективность.

В 2010 году проект был окончательно закрыт. Сейчас в мире действует около десятка экспериментальных реакторов на быстрых нейтронах мощностью не более 20 МВт. Кто нас догонит? Первые быстрые реакторы в нашей стране использовались для наработки плутония, который после обогащения превращался в компонент атомной бомбы. Последний реактор для этих целей располагался в Железногорске и был закрыт в 2012 году. Состоящая из одного энергоблока, эта станция мощностью 350 МВт располагалась на полуострове Мангышлак вблизи г. Шевченко ныне Актау, Казахстан.

Такую силовую установку можно поставлять куда угодно, потому что она принципиально не в состоянии произвести оружие. Кстати, до того, как Россия представила неопровержимые доказательства, многие зарубежные учёные просто отказывались верить, что созданная на нашей земле новая силовая установка не только не оставляет после себя грязных радиоактивных отходов, но ещё и полностью безопасна: она может выдержать и ураган, и землетрясение, и наводнение, не навредив ни людям, ни окружающей среде. Одна из тайн нашего чудо-реактора заключается в том, что, в качестве теплоносителя, он использует свинец. Этот металл, даже в случае попадания в «горячую зону» силовой установки, не вступает в реакцию. Соответственно, отравления окружающей среды не произойдёт. Да и заставить кипеть свинец крайне трудно. Даже если и случится внештатная ситуация, реактор остынет и надёжно законсервирует сам себя. В зарубежных «быстрых» реакторах в качестве теплоносителя используют натрий, что гораздо опаснее. Справка В России сейчас около 18 тысяч тонн радиоактивных отходов, требующих захоронения или глубокой переработки. Для сравнения, в США таких отходов 110 тысяч тонн, а всего в мире - 345 тысяч тонн. Экономика решает всё Однако, помимо безопасности, повышенной энергоотдачи и безотходности, есть у нашего «Прорыва» и ещё один козырь: с точки зрения экономики, он крайне низкозатратен.

Содержание

  • Уральскую АЭС переводят на отработавшее топливо. Физик-ядерщик объяснил минусы такого подхода
  • Мнение физика Андрея Ожаровского
  • Мнение физика Андрея Ожаровского
  • В Волгодонске отгрузили реактор на быстрых нейтронах
  • Россия запустила модель Реактора будущего или «Секрет» поставок урана в США

В России появился «вечный» ядерный реактор

На конференции был представлен широкий спектр докладов, касающихся перспектив развития технологий быстрых натриевых реакторов в России и за рубежом, нейтронной физики, теплоносителя, перспективных конструкционных материалов и оборудования. ЦАИР частного учреждения «Наука и инновации» был представлен доклад «История и перспективы развития зарубежных проектов реакторов с быстрым спектром нейтронов и натриевым теплоносителем», включающий анализ ретроспективы развития быстрых натриевых реакторов за рубежом, описание текущих зарубежных проектов реакторов типа БН и национальных программ поддержки их развития, а также результаты многокритериального сравнения данной технологии с другими инновационными реакторными системами.

Чтобы понимать, что такое МОКС-топливо, нужно знать две вещи. ТВЭЛ отдают в воду большое количество тепла. Хранение такого топлива — настоящая проблема для большинства стран мира. Но как может отработавшее топливо заново давать свет и электроэнергию?

В Томской области начато строительство опытно-демонстрационного энергоблока под названием БРЕСТ-300-ОД с реактором на быстрых нейтронах, использующим свинцовый теплоноситель.

По факту нашу «страна-бензоколонка» приступила к созданию технологии замкнутого ядерного цикла. Как же такое стало возможным, и что это означает для отечественной и мировой энергетики? Фото из открытых источников При всем уважении к модной нынче «зеленой» энергетике, полностью заменить собой традиционную она не в состоянии. Последняя тоже не является панацеей, поскольку запасы ископаемого топлива для нее угля, газа, нефти являются исчерпаемыми. Хорошие перспективы имеются у ядерной энергетики с привычными реакторами на тепловых нейтронах, но для их работы также требуется редкий и дорогой уран U-235. Однако есть вариант с так называемым «замкнутым топливным циклом», где ставка делается на реакторы на быстрых нейтронах, которые могут перерабатывать природный U-238 и торий.

Что же это за технология такая, и почему будущее именно за ней? Во время работы обычного ядерного реактора тяжелое ядро урана, плутония или тория при делении выпускает несколько «лишних» нейтронов, что приводит к эффекту наведенной радиоактивности. В российских ВВЭР это ведет к накоплению в водяном носителе трития, тяжелого изотопа водорода.

В реакторах на быстрых нейтронах все гораздо напряженнее — разрушительные потоки нейтронов, температуры теплоносителя, быстрота и многогранность реакций в активной зоне.

Технические трудности и экономические затраты создания полномасштабной энергетики на быстрых нейтронах в историческом периоде оказались практически на порядок выше, чем таковые для обычных реакторов. Это привело к значительному отставанию в их развитии и к тому, что пока что реакторы на быстрых нейтронах — это единичные и экспериментальные установки. Это отразилось еще на первом поколении реакторов на быстрых нейтронах, которые использовали в качестве теплоносителя жидкий натрий. А вот США, Франция и Япония, начав крупномасштабные эксперименты с реакторами на быстрых нейтронах с жидким натрием в то же время и даже раньше, сошли с дистанции, так и не добившись устойчивой работы этих сложных машин.

Сейчас Россия, успешно освоив технологию жидкого натрия в реакторах на быстрых нейтронах, переходит к следующему поколению энергоблоков, использующих гораздо более безопасный и перспективный свинцовый теплоноситель. Это действительно энергетика будущего: пока доступность урана-235 еще не достигла критических для отрасли величин, но его запасы не бесконечны.

В Волгодонске отгрузили реактор на быстрых нейтронах

Быстрое семейство Мне тут задали вопрос, на который сходу не получилось ответить, "а чем реакторы на быстрых нейтронах лучше обычных, ВВР например?
Мировой прорыв: уникальный реактор скоро заработает в Сибири - МК Выполнены запланированные исследования в обоснование безопасности многоцелевого исследовательского реактора на быстрых нейтронах МБИР и продления сроков эксплуатации БОР-60.
В России завершается сборка мощнейшего «суперреактора» на быстрых нейтронах На Белоярской АЭС после планово-предупредительного ремонта (ППР) включили в сеть энергоблок № 4 с реактором на быстрых нейтронах БН-800.

Реактор на быстрых нейтронах

  • Что такое цепная реакция деления
  • Россия сделала шаг к энергетике будущего — Фонд стратегической культуры
  • Новые публикации
  • АО "ТВЭЛ" представило инновационные решения для замыкания ядерного топливного цикла

Multi-Purpose Fast Reactor (MBIR)

Росатом начал тестовые испытания оборудования по производству инновационного ядерного топлива 25 марта 2024 года. Получение лицензии Ростехнадзора позволит перейти к следующему этапу испытаний: можно будет провести комплексные тесты оборудования всех производственных участков полной цепочки изготовления тепловыделяющих сборок БРЕСТ-ОД-300 с использованием обеднённого урана.

В частности, реактор БН-800 в 2022 году был переведен на промышленное смешанное оксидное уран-плутониевое МОКС-топливо. Другой вид уран-плутониевого топлива для быстрых реакторов — нитридное СНУП-топливо, оно будет использоваться в первом инновационном реакторе со свинцовым теплоносителем БРЕСТ-ОД-300 строится в Северске в рамках отраслевого проекта "Прорыв". В случае с МОКС-топливом у нас отработана вся технология производства и накапливается опыт эксплуатации БН-800 с полной загрузкой активной зоны уран-плутониевым топливом. В ходе исследований постепенно достигается все более высокая глубина выгорания ядерного топлива.

От имени администрации Обнинска к участникам обратился Глава городского самоуправления, Председатель Обнинского городского Собрания Геннадий Артемьев. Он подчеркнул, что вклад ученых Физико-энергетического института оказался решающим в этом историческом событии. Доктор физико-математических наук, профессор, президент ядерного общества Казахстана Владимир Школьник в своем выступлении отметил перспективность технологии быстрых реакторов и актуальность направления по выводу отработавших ядерных установок из эксплуатации. Сочетание быстрых и тепловых реакторов в организации замкнутого цикла и исследования тех лет остаются актуальными, и я очень рад, что в Физико-энергетическом институте данные работы продолжаются, так как они имеют важное значение для будущего развития атомной энергетики.

Эту тему нужно продолжать. Очень приятно отметить работы по материаловедению, особенно систематизированные данные исследований по радиационному распуханию. Это послужит дальнейшему развитию реакторов на быстрых нейтронах и пониманию, что происходит в радиационных полях с различными материалами». Участники заседания также рассмотрели возможности практического применения накопленных знаний при разработке новых реакторных установок, рассказывали о своей причастности к пуску БН-350 и поделились впечатлениями.

Многочисленные отказы экспериментального оборудования ставят под вопрос реализацию этого проекта. Единственными серьезными конкурентами России в этой области сейчас являются китайцы, которые, однако, используют российское топливо с обогащенным ураном: они запустили экспериментальный реактор на быстрых нейтронах CEFR в 2011 году, а сейчас строят демонстрационный блок, который должен заработать в ближайшие годы. Первый китайский опытный реактор CEFR мощностью 65 мегаватт проектировался в 90-х годах в России, но строился китайцами самостоятельно. Пущенная в 2010 году эта установка стала для Китая своего рода полигоном, где нарабатывается понимание, каким образом строить и эксплуатировать быстрые натриевые реакторы.

Однако с 2011 года и по сей день CEFR находится в полурабочем состоянии. Не выполнена и задача перевода реактора на собственное МОКС-топливо. Отдельно насчет «вечности». Сейчас на всех мировых АЭС, кроме Белоярской, используется уран-235, который составляет менее одного процента имеющегося в природе урана.

Топлива для реакторов на быстрых нейтронах хватит человечеству более чем на три тысячи лет. Создается он в рамках росатомовского проекта «Прорыв». Это упрощает управление и повышает энергоэффективность реактора. Конструкция БРЕСТ-300 обеспечивает так называемую естественную безопасность: на этом реакторе невозможна авария из-за неконтролируемого выброса нейтронов, приводящего к цепным реакциям, например в случае разгона реактора по мощности.

Реактор такого типа с электрической мощностью 300 МВт уже начали возводить в Северске Томская область.

Похожие новости:

Оцените статью
Добавить комментарий