Новости презентация биотехнологии

Презентация, обзор современных методов биотехнологии и анализ перспектив их развития к разделу Основы селекции растений, животных и микроорганизмов, Биология, 9. Презентация на тему "Биотехнология: достижения и перспективы развития", предназначена для сопровождения урока по аналогичной теме для обучающихся 10 класса. Генная инженерия - Мировые площади занятые трансгенными культурами - Направления клеточной. производственное использование биологических агентов для получения ценных продуктов и осуществления целевых превращений в биотехнологических процессах. Презентация на тему "Биотехнология: достижения и перспективы развития", предназначена для сопровождения урока по аналогичной теме для обучающихся 10 класса.

Биотехнологии – медицине будущего

Изобретение относится к биотехнологии и сельскохозяйственной микробиологии и касается штаммов, которые повышает урожайность пшеницы и содержание белка в зерне. Биология, презентация, доклад, проект на тему. нология достижения и перспективы развития – 1 061 просмотр, продолжительность: 10:13 мин., нравится: 1.

Презентация. Биотехнология. 10 класс

О том, как биотехнологии могут улучшить нашу жизнь, насколько сложно организовать. Последние новости [ Новости с фото ]. Discover the magic of the internet at Imgur, a community powered entertainment destination. Lift your spirits with funny jokes, trending memes, entertaining gifs, inspiring stories, viral videos, and so much. биотехнологии», доктор биологических наук, профессор, академик. Вы можете ознакомиться и скачать Биотехнология Направления развития и достижения. Презентация содержит 20 слайдов. Привлечены партнеры из ERA-Net EuroTransBio (ETB). (эффективный инструмент финансирования малых предприятий, работающих в области современных биотехнологий). 83 фото | Фото и картинки - сборники.

Успехи современной биотехнологии

Современные биотехнологии и проблемы биоэтики Выполнила студентка VI Эта презентация создана для помощи ученикам и учителям в подготовке к уроку по теме Биотехнологии.
Учёные впервые напечатали на 3D-принтере живые ткани человеческого мозга В данной презентации речь идет о биотехнологии, ее задачах и методах.
РОСБИОТЕХ-2024: инновационные биотехнологии в медицине, промышленности и сельском хозяйстве Презентация Современные биотехнологии Современные биотехнологии Биотехнологии в медицине.
Отраслевые биотехнологии Биотехнология как область знаний и динамически развиваемая промышленная отрасль призвана решить многие ключевые проблемы современности.

Биотехнология: изображения без лицензионных платежей

биотехнологии», доктор биологических наук, профессор, академик. Статья автора «РБК Тренды» в Дзене: Что сегодня происходит в биомедицине и как высокие технологии помогают даже в безнадежных случаях Биотехнологии – сфера науки. Презентация учебника «Биотехнология: основы биотехнологии и медицинской нанобиотехнологии» педагога и депутата ЗСО Елены Бахтенко прошла в ВоГУ.

Биотехнология

Вот почему их можно считать настоящим прорывом биотехнологической науки. Биотехнология как область знаний и динамически развиваемая промышленная отрасль призвана решить многие ключевые проблемы современности. Презентация на тему Биотехнология доступна для скачивания ниже. нология достижения и перспективы развития – 1 061 просмотр, продолжительность: 10:13 мин., нравится: 1. На площадке РОСБИОТЕХ-2024 прошли пленарные заседания, тематические сессии, круглые столы, выставка-презентация инновационных разработок в области биотехнологий для. Презентация, обзор современных методов биотехнологии и анализ перспектив их развития к разделу Основы селекции растений, животных и микроорганизмов, Биология, 9.

РОСБИОТЕХ-2024: инновационные биотехнологии в медицине, промышленности и сельском хозяйстве

С 2022 года Форум проводится при поддержке Отделения нанотехнологий и информационных технологий, Отделения медицинских наук и Отделения сельскохозяйственных наук РАН. Форум посвящен 300-летию Российской академии наук. Задача Форума — дать возможность для встречи и научных дискуссий специалистам в области разработки фундаментальных основ биотехнологий и специалистам, внедряющим инновационные разработки в клиническую практику, фармацевтические и пищевые производства. Попов и Федерального научного центра пищевых систем им. В работе Форума примут участие российские специалисты и ученые, в том числе 18 членов РАН, а также представители научного сообщества таких стран, как Индия три члена Индийской академии биомедицинских наук, в том числе Вице-президент Академии — профессор Hari S. В рамках Форума будут обсуждаться такие важные направления, как Современные вызовы и перспективные направления развития биотехнологий, Современные подходы в ранней диагностике, лечении и реабилитации пациентов при социально значимых заболеваниях, Применение нанотехнологий и IT технологий в здравоохранении и биомедицине, Возможности разработки и внедрения инновационных биомедицинских технологий на базе Университетской онкологической клиники, Профилактика онкологических заболеваний, Экологическая безопасность в биотехнологии и медицине, Пищевые биотехнологии и стратегии развития пищевых систем, Функциональная и специализированная пищевая продукция и др.

Продукцию используют для получения пищевых добавок, корма для скота, лекарств более 150 видов продукции, в том числе лизина Слайд 7 -Клеточная инженерия Из отдельной клетки можно вырастить целый организм Слайд 8 Описание слайда: Методы селекции микроорганизмов Традиционные методы- экспериментальный мутагенез и отбор по продуктивности. Новейший метод - генная инженерия В генной инженерии используют два способа: - выделение нужного гена из генома одного организма и внедрение его в геном бактерий; - синтез искусственным путем гена и внедрение его в геном бактерий Слайд 9 Описание слайда: Трансгенные организмы. Трансгенные организмы - животные, растения, микроорганизмы, вирусы, генетическая программа которых изменена с использованием методов генной инженерии. Слайд 10 Описание слайда: Механизм процесса С помощью генной инженерии ученые выделяют ген какого-нибудь организма и «встраивают» его в ДНК других растений или животных производят транспортировку гена, то есть трансгенизацию с целью изменения свойств или параметров последних Слайд 11.

Клонирование — это получение многочисленных копий гена, белка, клетки или организма Клонирование — это получение многочисленных копий гена, белка, клетки или организма. Клонирование генов чаще всего осуществляется с помощью бактерий и вирусов, поскольку, например, одна вирусная частица бактериофага, в которой содержится нужный ген, за один день может образовать более 1012 идентичных копий себя и этой молекулы. Клонирование растений также не представляет значительной трудности, поскольку клетки растений тотипотентны, т. Массовое клонирование животных долгое время сталкивалось с таким существенным препятствием, как отсутствие способности к бесполому размножению у высших животных Массовое клонирование животных долгое время сталкивалось с таким существенным препятствием, как отсутствие способности к бесполому размножению у высших животных. Однако в 1997 году эта проблема была разрешена с получением первого клонированного организма — овцы Долли. Для клонирования были взяты клетки молочной железы ее генетической матери, а также яйцеклетки суррогатной матери.

Ядра яйцеклеток удалялись, а на их место вводились ядра клеток молочной железы. После стимуляции развития зиготы электрическим током делящийся зародыш короткий промежуток времени культивировали на питательной среде, а затем вводили в матку суррогатной матери. Из пяти пересаженных эмбрионов выжил лишь один. Овечка Долли 5. Овца Долли являлась генетической копией овцы-донора клетки. В настоящее время клонирован уже целый ряд видов животных — мыши, собаки, коровы и др В настоящее время клонирован уже целый ряд видов животных — мыши, собаки, коровы и др.

Заманчивые перспективы перед человечеством раскрываются в области терапевтического клонирования — воспроизведения отдельных органов. Так, в настоящее время широко используются клонированная кожа, клетки соединительной ткани и другие части организма. Американские ученые клонировали ухо знаменитого голландского художника Винсента Ван Гога, мочку которого он себе отрезал при жизни. Роль клеточной теории в становлении и развитии биотехнологии Роль клеточной теории в становлении и развитии биотехнологии Создание клеточной теории позволило связать наследственность и изменчивость с их материальной основой — ДНК, а также определить, что клетка является элементарной единицей живых организмов.

Вредные примеси сорбируются на насадке и затем потребляются и обезвреживаются микроорганизмами. С утилизацией твердых отходов дело обстоит сложнее. Например, различные пластмассы, составляющие сейчас, наверное, основной компонент городских свалок, разлагаются в естественных условиях за сотни лет.

Эффективной технологии микробиологической переработки пластмассы пока не найдено. Тем не менее, недавно появились сообщения, что на пластиковом мусоре, скапливающемся в океанах в виде плавучих островов, обнаружены обширные колонии микроорганизмов. На поверхности пластика при тщательном осмотре были найдены микроскопические трещины и ямки, появление которых косвенно демонстрирует способность данных микробов разлагать углеводороды. Это оставляет надежду на разработку технологии биодеградации пластмасс в ближайшем будущем. Описаны также опыты по успешному очищению почвы от загрязнения пестицидами, ртутью и тяжелыми металлами. Опытные участки засеиваются модифицированными бактериями, способными перерабатывать или связывать опасные вещества. Причем бактерии высеиваются вместе с питательным веществом, дозировка которого строго рассчитана.

По прошествии определенного срока времени питательное вещество заканчивается и бактерии, сделав своё дело, погибают. Так предотвращается неконтролируемый рост модифицированных бактерий. Технология, безусловно, будет в дальнейшем развиваться. В 2010 году в Мексиканском заливе в ликвидации последствий разлива нефти участвовали бактерии-деструкторы, выведенные российскими учеными. Перспективы: С неизбежностью хорошие. Переработка промышленных и бытовых отходов микроорганизмами - дело, конечно, хлопотное. Особенно по сравнению с излюбленным традиционным методом утилизации - «свалил всё в овраг и забыл».

Однако непрекращающийся рост промышленного производства и вообще населения Земли просто не оставляют альтернатив биологическим методам переработки отходов и загрязнений. Биогаз — газ, получаемый водородным или метановым брожением биомассы. Метановое разложение биомассы происходит под воздействием трёх видов бактерий. В цепочке питания последующие бактерии питаются продуктами жизнедеятельности предыдущих. Первый вид — бактерии гидролизные, второй — кислотообразующие, третий — метанообразующие. Одной из разновидностей биогаза является биоводород, где конечным продуктом жизнедеятельности бактерий является не метан, а водород. Биогаз можно получать практически из любого органического сырья.

Раньше биогаз ассоциировался только с навозом, но сейчас его также получают из разнообразных отходов пищевой промышленности. Даже из отходов деревообрабатывающей промышленности можно извлекать биогаз, хотя целлюлоза и лигнин разлагается бактериями дольше. Биогаз используют в качестве топлива для производства электроэнергии, тепла или в качестве автомобильного топлива. Биогазовые установки могут устанавливаться как очистные сооружения на фермах, птицефабриках, спиртовых заводах, сахарных заводах, мясокомбинатах. В ряде стран Европы активно используются автобусы на биогазе. В развивающихся странах Азии строят недорогие малые односемейные биогазовые установки. Получаемый в них газ используется для приготовления пищи.

Больше всего малых биогазовых установок находится в Китае — более 40 млн биогазовых установок. В биогазовой индустрии Китая заняты 60 тысяч человек. Еще одно перспективное биотопливо - обычный этанол, получаемый в процессе переработки растительного сырья. Этанол в Бразилии производится преимущественно из сахарного тростника, а в США — из кукурузы. Производство этанола из тростника на сегодняшний день экономически более выгодно, чем из кукурузы из-за низких заработных плат у сборщиков сахарного тростника. Большим потенциалом также обладает маниок. Маниоку в больших количествах производят Китай, Нигерия, Таиланд.

Биоэтанол используется в основном как топливо для двигателей автомобилей. Для использования чистого этанола созданы другие двигатели они называются Flex-fuel - «гибкое топливо». Многотопливными также являются двигатели всех современных танков. Использование биоэтанола в качестве топлива позволяет снизить выбросы диоксида углерода, являющегося парниковым газом. Содержащийся в этаноле кислород позволяет более полно сжигать углеводороды топлива. Перспективы: Хорошие. Речь, конечно же, не идёт о полном переводе всей экономики Земли на биотопливо, мощностей просто не хватит.

Тем не менее, этот экологически чистый источник энергии является существенным подспорьем для экономики стран с развитым агропромышленным комплексом, и, наоборот, для мелких крестьянских хозяйств в развивающихся странах. В отношении генно-модифицированных животных справедливы, в принципе, те же опасения, что и в случае генно-модифицированных растений. В настоящее время мясо генетически модифицированных животных использовать в пищу запрещено. Исследования тем не менее проводятся, в том числе и в нашей стране. Имеются определённые достижения в этой области и направления использования трансгенных животных весьма разнообразны. Одним из них является создание животных с улучшенными хозяйственными признаками: повышенной продуктивностью например, усиление роста шерсти у овец. Другое — использование в качестве биофабрик по наработке различных медицинских препаратов инсулина, интерферона, фактора свертываемости крови и гормонов , которые выделяются с молоком.

Биотехнологии в современном мире презентация

24.Биотехнология достижения и перспективы развития Одним из направлений биотехнологии является селекция – выведение ценных для человека сортов растений или пород животных.
Биотехнологии нология достижения и перспективы развития – 1 061 просмотр, продолжительность: 10:13 мин., нравится: 1.
Презентация к статье Перспективные направления биотехнологии Вот почему их можно считать настоящим прорывом биотехнологической науки.

Последние комментарии

  • Telegram: Contact @biotehno
  • Статьи по теме «биотехнологии» — Naked Science
  • Смотреть слайды презентации Успехи современной биотехнологии
  • Аннотация к презентации
  • Презентация Перспективы развития биотехнологии
  • Презентация на тему "Биотехнологии"

РОСБИОТЕХ-2024: инновационные биотехнологии в медицине, промышленности и сельском хозяйстве

Биотехнология – достижения и проблемы - презентация онлайн Введение Современное состояние биотехнологии Биотехнология и её роль в практической деятельности человека Биотехнологии в растениеводстве.
Презентация биотехнологического комплекса в Министерстве науки и образования РФ Сочетание кремния и биотехнологий позволяет гибридным электронным цепям реагировать одновременно на электрические и биологические сигналы.

Презентация - Биотехнология-наука будущего

Сотрудники комплекса будут осуществлять как производственную деятельность, так и заниматься фундаментальными научными исследованиями в области биотехнологии, биохимии, генетики и защиты растений. Сегодня рынок посадочного материала составляет 300 млрд. Создание биотехнологического комплекса позволит обеспечить Российскую Федерацию собственным посадочным материалом и аккумулировать денежные средства в стране. Целями и задачами реализации проекта создания биотехнологического комплекса, является внедрение научных технологий в АПК, содействие проведению научных исследований в области биоинженерии, селекции, усилению взаимодействия науки и бизнеса, коммерциализации научных результатов путём массового производства отечественного посадочного материала высоких категорий качеств, создание новых высокотехнологичных мест и повышение экономической эффективности отрасли садоводства. Приоритетными задачами проекта являются проведение фундаментальных и прикладных исследований в области сельскохозяйственной биотехнологии, повышение эффективности селекционного процесса путем внедрения новых биотехнологических методов, обеспечение рынка Российского садоводства качественным, оздоровленным посадочным материалом перспективных сортов плодовых, ягодных и декоративных садовых культур, выход на международные рынки с конкурентоспособными Российскими сортами.

ГМП приводят к патологическим изменениям организма мышей. Чтобы полностью понять все риски употребления в пищу трансгенных продуктов, должно пройти несколько десятков лет и смениться несколько поколений, питавшихся ГМП. Слайд 13 Существует опасность влияния на микрофлору кишечника, то есть чужеродный ген может внедриться в полезные бактерии Употребление трансгенной еды может подавлять иммунитет человека, вызвав мутации болезнетворных бактерий Есть опасность при введении генов в трансгенное растение внести ген устойчивости к антибиотикам, в результате чего все известные препараты окажутся бессильными против микробов-мутантов ГМ-продукты могут стать причиной накопления в организме токсинов Есть вероятность, что внедрение чужеродных генов в растение может вызвать аллергические реакции.

Дунченко, М. Гинзбург, С. Купцова, А. Одинцова, А. Йогуртный продукт Авторы П. Харитонова К.

Н А Д Е Ж Д Ы: возможность точной диагностики, профилактики и лечения множества инфекционных и генетических заболеваний значительное повышение урожайности сельскохозяйственных культур путем создания растений, устойчивых к вредителям, грибковым и вирусным инфекциям и вредным воздействиям окружающей среды создание микроорганизмов, продуцирующие различные химические соединения, антибиотики, полимеры, аминокислоты, ферменты создание пород сельскохозяйственных и других животных с улучшенными наследуемыми признаками переработка, отходов, загрязняющих окружающую среду О П А С Е Н И Я: не будут ли организмы, полученные методом генной инженерии, оказывать вредное воздействие на другие живые организмы или окружающую среду? О П А С Е Н И Я: не будут ли организмы, полученные методом генной инженерии, оказывать вредное воздействие на другие живые организмы или окружающую среду?

Будущее в биотехнологии, генетике и селекции растений

Ученые утверждают, что биотехнология открывает новую эру взаимодействия человека с окружающей средой и, особенно, с живым веществом биосферы. Биотехнологии – все самые свежие новости дня по теме. А крупнейшая в мире исследовательская компания Research&Markets заинтересовалась отчетами по медицинским и биотехнологическим фирмам.

РОСБИОТЕХ-2024: инновационные биотехнологии в медицине, промышленности и сельском хозяйстве

Продукцию используют для получения пищевых добавок, корма для скота, лекарств более 150 видов продукции, в том числе лизина Слайд 7 -Клеточная инженерия Из отдельной клетки можно вырастить целый организм Слайд 8 Описание слайда: Методы селекции микроорганизмов Традиционные методы- экспериментальный мутагенез и отбор по продуктивности. Новейший метод - генная инженерия В генной инженерии используют два способа: - выделение нужного гена из генома одного организма и внедрение его в геном бактерий; - синтез искусственным путем гена и внедрение его в геном бактерий Слайд 9 Описание слайда: Трансгенные организмы. Трансгенные организмы - животные, растения, микроорганизмы, вирусы, генетическая программа которых изменена с использованием методов генной инженерии. Слайд 10 Описание слайда: Механизм процесса С помощью генной инженерии ученые выделяют ген какого-нибудь организма и «встраивают» его в ДНК других растений или животных производят транспортировку гена, то есть трансгенизацию с целью изменения свойств или параметров последних Слайд 11.

Концепция курса. Содержание курса отличается от традиционного...

Советы как сделать хороший доклад презентации или проекта Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться где это уместно. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание.

Технологии также можно использовать для генетической идентификации личности при проведении судебно-генетических экспертиз и формирования баз данных ДНК. В рамках первого проекта с участием специалистов ИМБ им.

Энгельгардта созданы микрочипы, позволяющие точно идентифицировать различные штаммы вирусов оспы и герпеса. Были разработаны два варианта конструкции микрочипов на стеклянной подложке и с гелевыми спотами , а также портативный флуоресцентный детектор для их анализа. Биочипы представляют собой миниатюрные приборы для параллельного анализа специфических биологических макромолекул. Идея создания подобных устройств родилась в Институте молекулярной биологии им. Энгельгардта Российской академии наук Москва еще в конце 1980-х гг.

За короткое время биочиповые технологии выделились в самостоятельную область анализа с огромным спектром практических приложений, от исследования фундаментальных проблем молекулярной биологии и молекулярной эволюции до выявления лекарственно устойчивых штаммов бактерий. Сегодня в ИМБ РАН производятся и используются в медицинской практике оригинальные тест-системы для идентификации возбудителей ряда социально значимых инфекций, в том числе таких как туберкулез, с одновременным выявлением их резистентности к антимикробным препаратам; тест-системы для оценки индивидуальной переносимости препаратов группы цитостатиков и многое другое. На одном таком чипе на площади менее 2 см2 могут располагаться миллионы точек-спотов размером в несколько микрон. Такой биосенсор позволяет в реальном времени отслеживать взаимодействие биомолекул. Его составной частью является одна из таких взаимодействующих молекул, которая играет роль молекулярного зонда.

Зонд захватывает из анализируемого раствора молекулярную мишень, по наличию которой можно судить о конкретных характеристиках здоровья пациента. Глубокое понимание механизма возникновения заболевания, в который вовлечены нуклеиновые кислоты, дает возможность сконструировать терапевтические нуклеиновые кислоты, восполняющие утраченную функцию либо блокирующие возникшую патологию. Двуцепочечные молекулы нуклеиновых кислот, ДНК и РНК, формируются благодаря взаимодействию пар нуклеотидов, способных к взаимному узнаванию и образованию комплексов за счет формирования водородных связей. В Новосибирске были созданы и первые препараты ген-направленного действия для избирательной инактивации вирусных и некоторых клеточных РНК. Подобные ген-направленные терапевтические препараты сегодня активно разрабатываются на основе нуклеиновых кислот, их аналогов и конъюгатов антисмысловых олигонуклеотидов, интерферирующих РНК, аптамеров, систем геномного редактирования.

Было доказано, что с помощью подобных соединений можно подавить функционирование определенных матричных РНК живой клетки, воздействуя на синтез белков, а также защитить клетки от вирусной инфекции. Так, олигонуклеотиды, комплементарные последовательности матричной РНК, подавляют экспрессию генов на стадии трансляции, т. Но терапевтические нуклеиновые кислоты могут вмешиваться и в другие молекулярно-биологические процессы, например, исправлять нарушения в процессе сплайсинга при созревании мРНК. Ведутся испытания ряда противовирусных и противовоспалительных препаратов, созданных на основе искусственных аналогов олигонуклеотидов, а некоторые из них уже начинают внедряться в клиническую практику. Ее организатором стал профессор Йельского университета, Нобелевский лауреат С.

В лаборатории ведутся исследования физико-химических и биологических свойств новых перспективных искусственных олигонуклеотидов, на основе которых разрабатываются РНК-направленные противобактериальные и противовирусные препараты. В рамках проекта, руководимого С. Альтманом, было выполнено масштабное систематическое исследование воздействия различных искусственных аналогов олигонуклеотидов на патогенные микроорганизмы: синегнойную палочку, сальмонеллу, золотистый стафилококк, а также вирус гриппа. Были определены гены-мишени, воздействием на которые можно наиболее эффективно подавить эти патогены; проводится оценка технологических и терапевтических характеристик самых действующих аналогов олигонуклеотидов, в том числе проявляющих антибактериальную и противовирусную активность. Эти новые соединения электронейтральны, устойчивы в биологических средах и прочно связываются с РНК- и ДНК-мишенями в широком диапазоне условий.

Благодаря спектру уникальных свойств они перспективны для применения в качестве терапевтических агентов, а также могут быть использованы для повышения эффективности средств диагностики, основанных на биочиповых технологиях. Среди коммерческих фирм лидером в создании терапевтических нуклеиновых кислот является американская компания Ionis Pharmaceuticals, Inc. Препараты Ionis против ряда других заболеваний проходят клинические испытания. Более эффективным является ферментативное разрезание мРНК, спровоцированное связыванием терапевтического олигонуклеотида с мишенью. Этот фермент и сам представляет собой РНК с каталитическими свойствами рибозим.

Чрезвычайно мощным средством подавления активности генов оказались не только антисмысловые нуклеотиды, но и двуцепочечные РНК, действующие по механизму РНК-интерференции. Использование этого механизма открывает новые возможности для создания широкого спектра высокоэффективных нетоксичных препаратов для подавления экспрессии практически любых, в том числе вирусных, генов. Молекулы нуклеиновых кислот, избирательно связывающие определенные вещества, называются аптамерами. На их основе могут быть получены препараты, блокирующие функции любых белков: ферментов, рецепторов или регуляторов активности генов. В настоящее время получены уже тысячи самых разных аптамеров, находящих широкое применение в медицине и технике.

Источником таких нуклеиновых кислот служат как погибшие, так и живые клетки. В норме их концентрация относительно низка, но обычно возрастает при стрессе и развитии патологических процессов. При возникновении злокачественной опухоли в кровоток попадают нуклеиновые кислоты, выделяемые раковыми клетками, и такие характерные циркулирующие РНК и ДНК могут служить маркерами заболевания. Сейчас на основе подобных маркеров разрабатываются подходы к ранней диагностике рака, методы прогнозирования риска его развития, а также оценки степени тяжести течения болезни и эффективности терапии. Например, в Институте химической биологии и фундаментальной медицины СО РАН было показано, что при раке предстательной железы повышается степень метилирования определенных участков ДНК.

Был разработан метод, позволяющий выделить из образцов крови циркулирующую ДНК и проанализировать характер ее метилирования. Этот способ может стать основой точной неинвазивной диагностики рака простаты, которой на сегодня не существует. Важным источником информации о состоянии здоровья могут служить так называемые некодирующие РНК, т. За последние годы было установлено, что в клетках образуется множество различных некодирующих РНК, участвующих в регуляции самых разных процессов на уровне клеток и целого организма. Изучение спектра микроРНК и длинных некодирующих РНК при различных состояниях открывает широкие возможности для быстрой и эффективной диагностики.

УЗНАТЬ ВРАГА В ЛИЦО Современные технологии с применением биологических микрочипов позволяют быстро и эффективно идентифицировать возбудителей ряда болезней туберкулеза, СПИДа, гепатитов В и С, сибирской язвы, инфекций новорожденных , фиксировать наличие определенных биотоксинов, определять хромосомные транслокации при лейкозах, регистрировать белковые маркеры онкозаболеваний, определять генетическую предрасположенность к болезням и индивидуальную чувствительность к некоторым типам терапии. Технологии также можно использовать для генетической идентификации личности при проведении судебно-генетических экспертиз и формирования баз данных ДНК. В рамках первого проекта с участием специалистов ИМБ им. Энгельгардта созданы микрочипы, позволяющие точно идентифицировать различные штаммы вирусов оспы и герпеса. Были разработаны два варианта конструкции микрочипов на стеклянной подложке и с гелевыми спотами , а также портативный флуоресцентный детектор для их анализа.

Биочипы представляют собой миниатюрные приборы для параллельного анализа специфических биологических макромолекул. Идея создания подобных устройств родилась в Институте молекулярной биологии им. Энгельгардта Российской академии наук Москва еще в конце 1980-х гг. За короткое время биочиповые технологии выделились в самостоятельную область анализа с огромным спектром практических приложений, от исследования фундаментальных проблем молекулярной биологии и молекулярной эволюции до выявления лекарственно устойчивых штаммов бактерий. Сегодня в ИМБ РАН производятся и используются в медицинской практике оригинальные тест-системы для идентификации возбудителей ряда социально значимых инфекций, в том числе таких как туберкулез, с одновременным выявлением их резистентности к антимикробным препаратам; тест-системы для оценки индивидуальной переносимости препаратов группы цитостатиков и многое другое.

На одном таком чипе на площади менее 2 см2 могут располагаться миллионы точек-спотов размером в несколько микрон. Такой биосенсор позволяет в реальном времени отслеживать взаимодействие биомолекул. Его составной частью является одна из таких взаимодействующих молекул, которая играет роль молекулярного зонда. Зонд захватывает из анализируемого раствора молекулярную мишень, по наличию которой можно судить о конкретных характеристиках здоровья пациента. Глубокое понимание механизма возникновения заболевания, в который вовлечены нуклеиновые кислоты, дает возможность сконструировать терапевтические нуклеиновые кислоты, восполняющие утраченную функцию либо блокирующие возникшую патологию.

Двуцепочечные молекулы нуклеиновых кислот, ДНК и РНК, формируются благодаря взаимодействию пар нуклеотидов, способных к взаимному узнаванию и образованию комплексов за счет формирования водородных связей. В Новосибирске были созданы и первые препараты ген-направленного действия для избирательной инактивации вирусных и некоторых клеточных РНК. Подобные ген-направленные терапевтические препараты сегодня активно разрабатываются на основе нуклеиновых кислот, их аналогов и конъюгатов антисмысловых олигонуклеотидов, интерферирующих РНК, аптамеров, систем геномного редактирования. Было доказано, что с помощью подобных соединений можно подавить функционирование определенных матричных РНК живой клетки, воздействуя на синтез белков, а также защитить клетки от вирусной инфекции. Так, олигонуклеотиды, комплементарные последовательности матричной РНК, подавляют экспрессию генов на стадии трансляции, т.

Но терапевтические нуклеиновые кислоты могут вмешиваться и в другие молекулярно-биологические процессы, например, исправлять нарушения в процессе сплайсинга при созревании мРНК. Ведутся испытания ряда противовирусных и противовоспалительных препаратов, созданных на основе искусственных аналогов олигонуклеотидов, а некоторые из них уже начинают внедряться в клиническую практику. Ее организатором стал профессор Йельского университета, Нобелевский лауреат С. В лаборатории ведутся исследования физико-химических и биологических свойств новых перспективных искусственных олигонуклеотидов, на основе которых разрабатываются РНК-направленные противобактериальные и противовирусные препараты. В рамках проекта, руководимого С.

Альтманом, было выполнено масштабное систематическое исследование воздействия различных искусственных аналогов олигонуклеотидов на патогенные микроорганизмы: синегнойную палочку, сальмонеллу, золотистый стафилококк, а также вирус гриппа. Были определены гены-мишени, воздействием на которые можно наиболее эффективно подавить эти патогены; проводится оценка технологических и терапевтических характеристик самых действующих аналогов олигонуклеотидов, в том числе проявляющих антибактериальную и противовирусную активность.

Похожие новости:

Оцените статью
Добавить комментарий