Новости применение искусственного интеллекта в медицине

Актуальные направления по применению искусственного интеллекта в медицине реализует компания СберМедИИ. Несмотря на обширные возможности, применение ИИ в медицине сталкивается с рядом препятствий и сопряжено с некоторыми рисками.

Врачам и пациентам: как искусственный интеллект помогает в медицине

Обзор Российских систем искусственного интеллекта для здравоохранения 63 181 Гусев Александр, Директор по развитию бизнеса Согласно Markets And Markets , объем глобального рынка искусственного интеллекта ИИ в сфере здравоохранения вырастет с 4,9 млрд долларов США в 2020 году до 45,2 млрд долларов США к 2026 году. В мире около 3 тыс. Рост интереса к ИИ обусловлен сразу несколькими трендами: появление мощных графических процессоров и рост вычислительной мощности современных компьютеров, развитие облачных вычислений, взрывной рост больших данных. Эти технологии дали возможность выполнять автоматизированное машинное обучение с высокой точностью получаемых моделей, что в свою очередь открыло многочисленные примеры успешной автоматизации процессов и перспектив цифровой трансформации с возможностью сокращения затрат на здравоохранение.

Два года назад начались клинические испытания ПО на основе технологий лучевая диагностика. В 2020-21 гг.

Сервисы использовались в 102 медицинских организациях при проведении 13 видов исследований КТ, МРТ и другие. Было обработано 3,8 млн исследований, подготовлено 104 дата-сетов механизмов хранения информации, предоставляющих быстрый доступ к большим объемам данных. Говорит главный внештатный специалист по лучевой и инструментальной диагностике, директор ГБУЗ «Научно-практический клинический центр диагностики и телемедицинских технологий ДЗМ» Сергей Морозов: «За время эксперимента мы увидели, что искусственный интеллект значительно снижает длительность подготовки описания результатов. Он не может заменить врача, но может в отдельных клинических сценариях ускорить работу рентгенолога, оптимизировать ресурсы за счет автоматизации двойных просмотров результатов скринингов. Поначалу врачи опасались, что ИИ заменит их, относились как к конкуренту, но потом настороженность все же сменилась слабопозитивным отношением».

Очевидно, что искусственный интеллект может взять на себя лишь часть врачебных функций. Окончательный диагноз все равно ставит только врач. И тем более никакой искусственный интеллект не сможет конкурировать с опытом, мудростью и непосредственным общением доктора с пациентом, а ведь все это играет важную роль при постановке диагноза и выработке схемы лечения. Как начать доверять машинам? С какими проблемами сталкиваются сами разработчики и производители медицинского программного обеспечения?

В ней содержится информация о тех исследованиях, которые проводятся в ходе обследования — например, флюорография, узи, МРТ, рентген. Ключевой продукт — это система описания, рекомендации и статистики. В нее входит набор протоколов разной степени формализации, которые позволяют эффективно описывать те или иные нозологии, чтобы потом иметь возможность организовать общение врачей — диагностов и клиницистов, а также помочь пациенту понять, о чем говорится в заключении». Весной 2020 года компания обратилась к проблеме коронавируса и применила к этому заболеванию формализованный протокол. Получился продукт, который определяет в ходе исследования объем поражения легких и позволяет визуализировать поражения.

Это удалось благодаря систематическому анализу 26 терабаз собранных геномов и метагеномов. С помощью AI появилась возможность генерировать в 4,8 раза больше белковых кластеров, чем существует в природе. Некоторые из созданных с помощью искусственного интеллекта редакторов генов демонстрируют сравнимую или улучшенную активность. Компания выложила OpenCRISPR-1 в открытый доступ, чтобы способствовать развитию технологии и её использованию в научных исследованиях и коммерческих проектах. Статью с научным исследованием можно почитать тут.

Предоставить доступ к еще большему разнообразию. С помощью AI появилась возможность экстраполировать на новые белковые пространства, которые еще не были освоены, тем самым выходя за рамки природных белков.

Здесь и выручает ФМРТ, которая при наложении на структурную МРТ позволяет получить карту функциональных зон, которые для наглядности можно раскрасить в разные цвета. Если нейрохирург увидит такую трехмерную модель до операции, он сможет спланировать ее ход. А если мы загрузим эту модель в нейронавигационную систему, то хирург в реальном времени будет видеть на экране, где находится его скальпель относительно конкретных зон. Лаборатория изучает мозг человека, больше половины проектов связаны с нейровизуализацией Источник: Анастасия Пешкова — Недавно вы начали совместный проект с Университетом Шарджи ОАЭ.

Это ваше первое сотрудничество с арабскими коллегами? Российскую часть возглавляю я, а арабскую — Рифат Хамуди, профессор и директор Научно-инновационного центра точной медицины в Университете Шарджи. Они в большей степени отвечают за медицину и биологию, сбор данных, мы как центр ИИ — за анализ данных, обработку и построение моделей. Стартовым проектом совместной лаборатории стало создание методов и моделей исследования гетерогенности раковых опухолей. Но проблема в том, что в этом образце присутствует много разных типов клеток, которые содержат разную информацию. Если мы берем полностью часть ткани и проводим генетический или транскриптомный анализ, то мы смотрим «среднюю температуру».

Мы считаем, что всё гомогенно и однообразно, но это не так. Часть клеток могут откликаться на какую-то одну терапию, а другие — только на другую. Чтобы не терять информацию об отдельных структурах, правильнее делать одноклеточный анализ. Из каждой однородной подгруппы клеток выделять «представителя» и анализировать его. Таким образом получаются генетические и транскриптомные профили каждого отдельного участка. Имея профили большого числа участков в этом кусочке ткани, можно строить биологические модели о генетических путях, механизмах регулирования клеток.

Например, модель эволюции этой ткани во времени: что будет происходить с разными типами клеток через определенный период. И тогда мы сможем моделировать на компьютере взаимодействие каких-то веществ и тканей. Что будет, если мы добавим какое-то одно лекарство? А другое, третье или комбинацию препаратов? Мы прогнозируем, какие средства подействуют лучше и как они перекликаются. В первую очередь на астму и диабет.

Топ-7 прорывов в медицине в 2023 году

Как присутствие искусственного интеллекта влияет на современную российскую медицину? Какова же ситуация с применением ИИ в медицине по состоянию на июнь 2021 г.? На наш взгляд, такая фиксация времени необходима ввиду бурного развития рассматриваемой области. Какова же ситуация с применением ИИ в медицине по состоянию на июнь 2021 г.? На наш взгляд, такая фиксация времени необходима ввиду бурного развития рассматриваемой области.

Национальная база медицинских знаний

ИИ-революция в генной инженерии: OpenCRISPR-1 открывает новую эру в редактировании ДНК / Хабр Актуальные направления по применению искусственного интеллекта в медицине реализует компания СберМедИИ.
Как ИИ создает лекарства в 10 раз быстрее и в 600 раз точнее, чем человек Искусственный интеллект в медицине.
Видео: Как искусственный интеллект помогает в медицине | Новости России Актуальные направления по применению искусственного интеллекта в медицине реализует компания СберМедИИ.
ВЦИОМ. Новости: Прогресс или угроза, или об искусственном интеллекте в медицине Сегодня искусственный интеллект помогает находить признаки заболеваний по более чем 20 направлениям, а количество обработанных с помощью него лучевых исследований уже превысило 11 миллионов.

Полная роботизация: как искусственный интеллект помогает врачам

Глава Минздрава отметил: искусственный интеллект будут использовать для получения снимков с различных видов цифровых приборов. Искусственный интеллект (ИИ) применяется во многих отраслях медицины и кажется, что его преимущества по сравнению с человеком очевидны. Несмотря на то, что искусственный интеллект сегодня является одной из основополагающих технологий в здравоохранении и персонализированной медицине, в профессиональной среде возникает вопрос: а так ли умен ИИ и какие риски связаны с его применением? Технологии искусственного интеллекта для системы здравоохранения.

Национальная база медицинских знаний

Искусственный интеллект (ИИ) сегодня является инновационной технологией, которая вызвала настоящую революцию в различных отраслях, и медицина не стала. Попробуем проанализировать, как решения на основе искусственного интеллекта применяются в медицинских учреждениях и как они влияют на качество диагностики и лечения. “применение искусственного интеллекта в здравоохранении на примере анализа рентгенограмм грудной клетки”.

Топ-7 прорывов в медицине в 2023 году

Это специальное мобильное приложение, которое задает человеку вопросы, а тот описывает симптомы. После этого сервис проводит поиск информации о проблеме и дает рекомендации. Также программы с искусственным интеллектом используются в анализе рентгеновских снимков и в разработке новых лекарств. У компании Semantic Hub есть сервис на базе ИИ для оценки потенциала медицинских препаратов перед их выпуском на рынок.

Алгоритм собирает и проводит анализ научных публикаций, связанных с заболеванием, назначением и действием разрабатываемого лекарства. После этого ИИ анализирует информацию и делает вывод о конкурентных преимуществах медикамента и возможностях его продвижения на рынке. Еще ИИ дает возможность оценивать влияние медикаментов на организм человека.

Это помогает врачам понять, как генетические особенности того или иного пациента влияют на течение заболевания и какой эффект может оказать новый лекарственный препарат. С помощью приложения IBM Watson Health Cloud доктор получает и анализирует данные об организме пациента с электронного браслета и на основе этого подбирает эффективный курс лечения. И это лишь малая часть того, что способен делать искусственный интеллект.

Но наряду с плюсами есть и минусы. Какие есть препятствия на пути внедрения ИИ в медицину? Почему некоторые медицинские эксперты относятся с недоверием к искусственному интеллекту?

Все дело в том, что технологии еще далеки от совершенства и их использование для лечения пациентов может быть небезопасным.

Собянин сообщил, что благодаря использованию ИИ врачи Москвы получат «цифровых помощников», которые помогут подобрать лечение пациентам. Информация будет регистрироваться и обрабатываться только в цифровом формате, врачи смогут больше времени уделять задачам, где нужны их компетенции. Кроме того, планируется внедрить умный проактивный подход, в рамках которого ИИ будет анализировать медицинские карты и выявлять риски возникновения заболеваний.

Задача Минздрава — создать условия для расширения внедрения технологий искусственного интеллекта в клиническую практику. Рассчитываем, что меры поддержки, предусмотренные в федеральном проекте, позволят реализовывать конкретные проекты в области искусственного интеллекта», — отметил замминистра здравоохранения России Павел Пугачев. Как меняются поликлиники Москвы Подробнее «Использование технологий ИИ позволяет на раннем этапе выявить заболевание, а соответственно — дешевле и проще его вылечить. Это снижает финансовую нагрузку на систему здравоохранения в целом, упрощает работу врачей и повышает продолжительность и качество жизни нас, обычных граждан», — подчеркнул директор по направлению «Цифровая трансформация отраслей и компаний» АНО «Цифровая экономика» Алексей Сидорюк.

Вот лишь некоторые возможности применения технологий искусственного интеллекта ИИ в здравоохранении. Анализ медицинских изображений. Компьютерное зрение позволяет находить закономерности и отклонения от нормы в снимках различных органов на КТ, МРТ, рентгенографии, маммографии и т. Это существенно экономит время для врачей при постановке диагноза, а также повышает его точность, снижает вероятность ошибок. Например, некоторые сервисы, помимо анализа изображений, автоматически заполняют врачебное заключение. Если сервис выявляет патологию, то ещё помогает врачу составить маршрутизацию пациента — к каким специалистам дальше его необходимо направить. Прогноз течения заболевания. ИИ-технологии помогают врачам обнаружить неизвестные корреляции и скрытые закономерности течения заболевания путем изучения больших массивов данных, после чего подбирается индивидуальный план лечения с наиболее подходящими препаратами.

Эти технологии дали возможность выполнять автоматизированное машинное обучение с высокой точностью получаемых моделей, что в свою очередь открыло многочисленные примеры успешной автоматизации процессов и перспектив цифровой трансформации с возможностью сокращения затрат на здравоохранение. В последние годы мы наблюдаем постоянный венчурного инвестирования в медицинские стартапы, использующие технологии искусственного интеллекта. По данным CB Insights , интерес инвесторов к этому рынку является одним из самых высоких среди всех направлений цифрового здравоохранения. В 2021 г.

Эксперимент по внедрению технологий искусственного интеллекта

Или, если есть необходимость, отправить пробу на повторное исследование". Робот со скальпелем Однако использование роботов в медицине не ограничивается только диагностическими автоматизированными системами. Активно развивается применение искусственного интеллекта и в хирургии. По словам Андрея Наташкина, основателя и СЕО Mirey Robotics, сегодня в рамках общей хирургии уже выделилось отдельное направление — телехирургия. Технология позволяет хирургу управлять роботизированным манипулятором, который способен совершать сверхточные движения.

Но здесь есть две опасности. Первая — разрыв интернет—соединения, вторая — это кибератаки. А во время операционного вмешательства эти факторы, которые ведут к потере управления процессом, могут стать фатальными для пациента". По словам эксперта, в связи с этим сейчас на первый план выходит вопрос обеспечения безопасных условий во время операций с использованием роботов, и недавно российские учёные представили своё решение данной проблемы: в условиях возникновения чрезвычайной ситуации манипулятор сможет автономно завершить оперативное вмешательство, без контроля со стороны хирурга.

Сейчас большинство хирургических операций проводятся с помощью американских робот—ассистированных хирургических систем Da Vinci — самых известных роботов—хирургов во всём мире.

Оценивает плод нейросеть в течение пяти дней. Алгоритм ведет съемку зародышей каждые десять минут.

В отличие от традиционного метода, вынимать эмбрионы из инкубатора не нужно. И, соответственно, это идет в помощь эмбриологу, чтобы лучшего качества эмбрион перенести", — пояснила заведующая эмбриологической лабораторией Алина Карпенко. Есть и обратные примеры.

В ноябре Росздравнадзор впервые приостановил работу нейросети компании "Интеллоджик". Решение регулятора разработчики хотят опровергнуть. С 2023 года в России есть ГОСТ для проектирования и тестирования нейросетей, где алгоритмам прописали жизненный цикл, по итогу которого программы нужно проверять и обновлять.

Как раз по этим принципам в московском онкоцентре имени Блохина врачи обучают нейросети. К медикам обращаются клиники со всей страны. Чему мы должны обучить искусственный интеллект?

Не просто визуализации каких-то образований, не просто увидеть что-либо.

Он видит профессиональную проблему с разных сторон и применяет кросс-дисциплинарный подход. Например, врач при постановке диагноза учитывает не только данные по своему профилю, но и по смежным дисциплинам. А еще берет во внимание эмоциональное состояние пациента, его образ жизни, помнит, что пациент может симулировать или что симптоматику могут искажать сопутствующие заболевания. С учетом всего этого диагностика будет намного качественнее. Наверное, у многих так бывало, что все данные и цифры говорят об одном, но есть четкое внутреннее ощущение, что сейчас нужно сделать другой выбор. И в итоге такие решения оказываются верными.

Это неосознаваемый процесс, основанный на предыдущем опыте и анализе более широкой совокупности факторов, скрытых от сознания. Интуиция — это пока чисто человеческая черта и навык. Но есть у естественного интеллекта не только преимущества, но и слабые места — тот самый человеческий фактор. Любому биологическому организму свойственна усталость, влекущая потерю концентрации и риск совершить ошибку. Огромный поток интерактивных данных и массив исторически накопившихся данных в виде анамнеза заболеваний, предыдущих исследований, динамики показателей здоровья пациента, множество факторов для принятия решений и катастрофическая нехватка времени — неподъемная ноша для обычного врача. Медработнику нужно осознать, проанализировать, сопоставить, пропустить через себя и выйти на принятие решения, на которое есть только минуты, а то и секунды. А если специалист не в настроении или плохо себя чувствует, то эффективность его диагностики снижается в разы.

Хочу отдельно коснуться потенциальной пользы применения ИИ в медицине. Почему потенциальной? Потому, что сейчас систем ИИ, которые быстро определяют риски и учитывают множество входных параметров, не очень много и порядок их применения пока полностью не урегулирован. ИИ и нейросети способны в будущем преобразить современное здравоохранение. Изменить к лучшему систему диагностики, повысить качество оказания медицинских услуг при одновременном снижении расходов.

Если нейрохирург увидит такую трехмерную модель до операции, он сможет спланировать ее ход. А если мы загрузим эту модель в нейронавигационную систему, то хирург в реальном времени будет видеть на экране, где находится его скальпель относительно конкретных зон. Лаборатория изучает мозг человека, больше половины проектов связаны с нейровизуализацией Источник: Анастасия Пешкова — Недавно вы начали совместный проект с Университетом Шарджи ОАЭ. Это ваше первое сотрудничество с арабскими коллегами? Российскую часть возглавляю я, а арабскую — Рифат Хамуди, профессор и директор Научно-инновационного центра точной медицины в Университете Шарджи. Они в большей степени отвечают за медицину и биологию, сбор данных, мы как центр ИИ — за анализ данных, обработку и построение моделей. Стартовым проектом совместной лаборатории стало создание методов и моделей исследования гетерогенности раковых опухолей. Но проблема в том, что в этом образце присутствует много разных типов клеток, которые содержат разную информацию. Если мы берем полностью часть ткани и проводим генетический или транскриптомный анализ, то мы смотрим «среднюю температуру». Мы считаем, что всё гомогенно и однообразно, но это не так. Часть клеток могут откликаться на какую-то одну терапию, а другие — только на другую. Чтобы не терять информацию об отдельных структурах, правильнее делать одноклеточный анализ. Из каждой однородной подгруппы клеток выделять «представителя» и анализировать его. Таким образом получаются генетические и транскриптомные профили каждого отдельного участка. Имея профили большого числа участков в этом кусочке ткани, можно строить биологические модели о генетических путях, механизмах регулирования клеток. Например, модель эволюции этой ткани во времени: что будет происходить с разными типами клеток через определенный период. И тогда мы сможем моделировать на компьютере взаимодействие каких-то веществ и тканей. Что будет, если мы добавим какое-то одно лекарство? А другое, третье или комбинацию препаратов? Мы прогнозируем, какие средства подействуют лучше и как они перекликаются. В первую очередь на астму и диабет. Если она будет создана, любая клиника в региональном центре сможет взять образец ткани, провести его гистологическое окрашивание и передать туда, где оборудование позволит сделать такой анализ.

Мы рекомендуем

  • Искусственный интеллект в клинической медицине | Новый Элемент
  • Читайте также:
  • Искусственный интеллект в медицине. Настоящее и будущее
  • ОБ АССОЦИАЦИИ
  • ACHIEVEMENTS AND PROSPECTS OF ARTIFICIAL INTELLIGENCE IN MEDICINE
  • Платформа ИИ Минздрав

Обзор Российских систем искусственного интеллекта для здравоохранения

Искусственный интеллект создал новое лекарство всего за 21 день - Росздравнадзор впервые приостановил применение медизделия с искусственным интеллектом (ИИ) — системы анализов , позволяющей врачам обнаружить на снимках компьютерной томографии патологии.
Нейросети в качестве врача: как искусственный интеллект влияет на развитие медицины — СП.АРМ Применение искусственного интеллекта в медицине позволит повысить удовлетворенность пациентов работой медицинского персонала, снизить нагрузку на врачей, уменьшить стоимость услуг и повысить качество медицинской помощи.
Собянин сообщил, что в Москве ИИ станет базовой медицинской технологией 6 случаев, когда искусственный интеллект может творить чудеса в здравоохранении.

Искусственный интеллект в медицине

Это позволяет сделать диагностику пациента более персонализированной и быстрой: СППВР ранжирует пациентов по степени тяжести, что также позволяет врачам своевременно реагировать на эти данные и оказывать помощь в первую очередь тем, кто нуждается в ней больше всего. Как создать медицинский сервис с использованием ИИ Как происходит разработка медицинских сервисов с использованием ИИ — с момента постановки задачи до выхода готового продукта в клиническую практику? Сбор данных. В первую очередь следует начать со сбора огромного массива данных реальных пациентов из тех медицинских учреждений, в которых они когда-либо проходили лечение. Для этого понадобится: выявить проблему и определить диагноз, с которым вы хотите работать; найти группы врачей, которые помогут вам валидировать вашу модель; собрать группу разработки, которая сможет выстроить эту модель и «обучить» её. Прежде чем обработать данные, предстоит подготовить их. Для этого их нужно обезличить: в ходе этого процесса пациент получает код, а также убираются персональных данных ФИО, номер паспорта и т.

При этом год рождения и диагноз, не обезличиваются. Разметка данных. После того, как данные прошли процедуру обезличивания, они передаются врачам на разметку. Прежде чем приступить к разметке данных, врачи определяют методологию, по которой они будут работать с разметкой. Они определяют диагноз, симптоматику, а также зоны и маркеры, с которыми они будут работать. Только после этого врачи вручную размечают снимки.

Сегодня разметка данных, как правило, происходит с помощью программ, где врач в специальном интерфейсе очерчивает необходимые зоны. Повторная разметка. После первичной разметки данных те же снимки проходят аналогичную процедуру, которую проводит уже другая группа врачей. На этом этапе отсеиваются сомнительные, спорные или неверные диагнозы, а также снимки, которые не могут быть валидированы в выбранной модели исследования. Обучение нейросети. Когда все снимки прошли разметку, этот набор данных попадает к разработчикам, которые на их основе начинают обучать нейронную сеть.

Даже если сервис достиг определённого уровня работоспособности, он не может быть сразу использован на практике. Прежде он проходит этап валидации: группе врачей и обученной нейросети выдаются новые данные, которые им предстоит разметить. После этого результаты, полученные врачами и нейросетью, сопоставляются между собой, и модель получает класс точности. Регистрация в Министерстве здравоохранения. По завершении этапа валидации прототип должен пройти регистрацию в Минздраве и получить регистрационное утверждение. На этом этапе экспертная группа — на этот раз со стороны Минздрава — вновь внимательно проверяет работу модели и её алгоритмов.

Интеграция в систему здравоохранения. Только если сервис пройдёт проверку в Минздраве и получит регистрационное утверждение, он может использоваться в медицинских учреждениях. Диагностика заболеваний Чат-боты уже могут с высокой эффективностью помогать пациентам самостоятельно ставить диагноз, а также помогать в постановке диагноза и врачам. Например, ИИ компании Babylon Health предоставляет соответствующую информацию о здоровье на основе симптомов, описанных самим пациентом. Понятно, что симптомы могут быть описаны неверно или пациент может попытаться ввести ИИ в заблуждение умышленно. Поэтому в компании прямо заявляют, что их компьютерный ассистент не ставит диагноз.

Это сделано для того, чтобы свести к минимуму юридическую ответственность компании, но в будущем мы наверняка увидим, как чат-боты будут ставить диагнозы по мере повышения точности их работы. А на перспективы ИИ в Babylon Health смотрят оптимистично, заявляя, что они уже доказали эффективность своего ИИ в первичной медико-санитарной помощи, а также смогли создать такую систему искусственного интеллекта для медицины, которая не является «черным ящиком». Это отличает их, например, от Alphabet, материнской компании Google, представители которой еще сравнительно недавно заявляли о том, что до сих пор не знают, что конкретно изучают их модели машинного обучения, о чём мы писали в статье, посвященной LLM. И пока сложно сказать, насколько они продвинулись в понимании алгоритмов работы своих программ глубокого обучения. А вот исследователи из Babylon Health продвинулись совершенно точно. Также современные ИИ решают проблемы приоритизации и медицинской сортировки.

Рекомендации на основе глубокого анализа данных поступающих пациентов для обеспечения точной приоритизации и медицинской сортировки ИИ дает очень быстро в режиме реального времени. Наиболее известные решения для этих целей предлагает Enlitic. ИИ Enlitic Curie сканирует поступающих пациентов, обрабатывая множество клинических данных в том числе учитываются и старые диагностические карты и определяя приоритет на лечение, после чего сразу же направляет больных к наиболее подходящему врачу. Трудно переоценить пользу этих алгоритмов, исключающих из анализа человеческий фактор, ведь после того как они будут усовершенствованы, они помогут спасти тысячи жизней. Стоит рассказать и о новом алгоритме ИИ, который поможет диагностировать рак легких. Много лет человечество проигрывало борьбу с онкологическими заболеваниями, которые ежегодно убивают около 10 миллионов человек по всему миру.

Одной из самых страшных форм онкологии является рак легких, распознавание которого на ранних стадиях и до сих пор является для ученых сложнейшей задачей. Но весьма вероятно, что справиться с этим человеку поможет искусственный интеллект. Исследователи из Бостонского университета разработали ИИ, который долгое время обучался на полноформатных фотографиях легочных тканей пациентов размеры таких изображений составляют обычно более 1 Гб, что делает их анализ человеком крайне сложным. ИИ на примере фото обучали распознавать аденокарциному легкого, плоскоклеточный рак легкого и соседнюю не раковую ткань. Результаты обучения оказались положительными: алгоритм смог продемонстрировать более высокую эффективность, чем другие современные методы распознавания патологий на полноформатных слайдах. На данный момент новый алгоритм планируется внедрить в помощь патологоанатомам, однако при успешном внедрении возможности ИИ могут быть расширены, ведь главное — научиться диагностировать опасные заболевания на самых ранних стадиях, пока сохраняются высокие шансы на полноценное излечение.

Существуют и компании, специализирующиеся на разработке ИИ-продуктов для ранней диагностики различных заболеваний. Они позволяют анализировать хронические состояния, используя лабораторные и другие медицинские данные, чтобы выявлять опасные болезни как можно раньше.

Обработка речи человека, интеллектуальная поддержка принятия решений и другие технологии на базе ИИ помогут медикам уделять больше времени на диагностику сложных случаев и повысить эффективность лечения больных. Как российские медики применяют ИИ сейчас Компьютерное зрение Эта разработка — одна из наиболее востребованных сейчас в медицине технологий на базе нейросетей. Она помогает врачу определить правильный диагноз и была очень полезна для медиков, работавших в ковид-госпиталях во время пандемии. Компьютерное зрение способно: анализировать изображения; определить состояние органов и тканей при различных заболеваниях; быстро обнаружить патологии на КТ-снимках легких. Он помогает медику быстрее и точнее интерпретировать флюорограммы и рентгенограммы.

Искусственный интеллект анализирует снимки за несколько секунд и определяет патологии органов грудной клетки по пяти клиническим направлениям. Еще сервис умеет сортировать проблемы по степени опасности и оповещать о необходимости немедленного вмешательства.

Документы pdf16. Более подробную информацию об использовании файлов cookies можно найти здесь , наши правила обработки персональных данных — здесь. Продолжая пользоваться сайтом, вы подтверждаете, что были проинформированы об использовании файлов cookies сайтом НИУ ВШЭ и согласны с нашими правилами обработки персональных данных.

Созданная база помогла при разработке лекарства от синдрома Мартина-Белл. За 18 месяцев команда смогла создать препарат, который уже успешно прошел две фазы клинических исследований. Для сравнения, в обычных условиях разработка и тестирование лекарственного препарата занимает от пяти до десяти лет. При этом затраты на его создание просто на порядки меньше классических. В части поиска информации и ее классификации нейросети показывают отличные результаты. Они способны относительно быстро сканировать интернет на всех существующих языках, собирая данные, которые касаются конкретной темы. Добиться такой эффективности при работе вручную не получится. Искусственный интеллект и персонифицированная медицина Для большинства наиболее распространенных болезней разработаны терапевтические схемы приема лекарственных препаратов. Для лечения некоторых болезней например, туберкулеза или онкологии единственными эффективными препаратами выступают довольно токсичные вещества. Из-за низкой селективности такие лекарства оказывают побочные действия, пагубно влияют на печень, почки и сердечно-сосудистую систему. И если ранее альтернатив не существовало и применение агрессивных препаратов считалось допустимым с причинением ущерба для здоровья в процессе лечения, то сейчас методика меняется. Развитие медицины и медицинской химии позволяет работать не только над поиском принципиально новых лекарств, но и над подбором оптимальных схем лечения по уже известным методикам. Индивидуальная дозировка препаратов, имеющих сильные побочные эффекты, могла бы снизить негативное влияние на пациентов, но сложность расчетов не позволяет проводить их массово. К тому же их нужно проводить несколько раз в день. Нейросети способны проводить такие расчеты быстро и качественно. AI для комбинационной терапии раковых больных с помощью искусственного интеллекта. Уже во время первого тестирования система показала свою эффективность. Для пациента с прогрессирующим раком простаты система рассчитывала индивидуальную комбинацию препаратов на протяжении всего курса лечения.

Лечат рак и эпилепсию: как искусственный интеллект помогает врачам и спасает жизни

Многие россияне опасаются применения ИИ в медицине. Возможность делать прогнозы с помощью искусственного интеллекта в медицине применяют и иначе. Цифровые решения на базе искусственного интеллекта полезны для медицины не меньше роботов.

Топ-7 прорывов в медицине в 2023 году

Особое внимание уделяется радиологии — использованию нейросетей для анализа рентгеновских снимков. Google использовали алгоритмы для интерпретации снимков грудной клетки, чтобы поставить 14 различных диагнозов, от пневмонии до гипертрофии сердца и коллапса легкого. DNN также способны диагностировать отдельные виды рака , переломы, кровоизлияния, ретинопатию, поражения кожи и множество других заболеваний. Алгоритмы могут улучшить работу дерматологов, кардиологов, офтальмологов и даже психотерапевтов, позволяя отслеживать развитие депрессии. Примеры применения ИИ в здравоохранении на протяжении жизни человека Проблема состоит в том, что большинство исследований и отчетов все еще существуют только в виде препринта. Они не опубликованы и не проверены рецензентами. В препринтах проверка работоспособности алгоритмов осуществляется с точки зрения точности, что еще не равно клинической эффективности.

Эффективность подтверждается с помощью недешевых клинических испытаний. Нейронные сети для пациентов Алгоритмы, которые пациенты могут использовать самостоятельно, развиваются медленнее, чем те, которые используют клиницисты. Датчики на часах определяют частоту сердечных сокращений пользователя в состоянии покоя и при физической нагрузке, и когда происходит сильное отклонение от ожидаемого, пользователю выдается предупреждение о записи ЭКГ через часы, результаты которого затем интерпретирует алгоритм.

Одним из ключевых направлений стратегии является развитие рынка программных продуктов на основе ИИ для здравоохранения нашей страны. В настоящее время мы нашли информацию о 65 разнообразных ИИ-системах для медицины и здравоохранения, созданных и продвигаемых на рынке нашей страны. Условно существующие продукты можно объединить в несколько основных групп: Анализ медицинских изображений и цифровая диагностика Профилактика и лечение состояний, заболеваний и осложнений Прочие направления.

Помочь маленькой пациентке смогли лишь в Санкт-Петербурге, проведя специально исследование. Медики спасли жизнь маленькой Ксюши. Помочь врачам определить опасную болезнь всего за несколько минут помог искусственный интеллект. Ученым удалось установить связь между формой заболевания, яркостью и цветовым тоном очагов инсулина при анализе каждого пикселя на КТ-снимках. Причем программа может фиксировать различия в цветовых характеристиках, которые невидимы для глаза врача. Сейчас они пролечены, и мы имеем на исходе выздоровление», — рассказала заведующая кафедрой детских болезней Центра Алмазова Ирина Никитина. Благодаря искусственному помощнику и работе эндокринологов, радиологов, хирургов и патоморфологов более 120 детей из России и ближнего зарубежья с врожденным гиперинсулинизмом получили лечение и выздоровели. Специальная программа, Voice2Med, позволяет врачам делать описание снимков за 15 минут вместо часа. В день медикам приходится расшифровывать более 150 снимков.

Компания Profluent считает, что основанный на AI-технологиях генный редактор OpenCRISPR представляет собой мощную альтернативу, которая позволит обойти различные ограничения и даст возможность создавать оптимальные свойства. Используя большие языковые модели LLM , обученные работе с биологическим разнообразием, мы демонстрируем успешное и максимально точное редактирование генома человека с помощью программируемого редактора генов, разработанного с использованием искусственного интеллекта. Это удалось благодаря систематическому анализу 26 терабаз собранных геномов и метагеномов. С помощью AI появилась возможность генерировать в 4,8 раза больше белковых кластеров, чем существует в природе. Некоторые из созданных с помощью искусственного интеллекта редакторов генов демонстрируют сравнимую или улучшенную активность. Компания выложила OpenCRISPR-1 в открытый доступ, чтобы способствовать развитию технологии и её использованию в научных исследованиях и коммерческих проектах. Статью с научным исследованием можно почитать тут.

Похожие новости:

Оцените статью
Добавить комментарий