Термоядерный синтез предполагает, что вместо радиоактивных элементов, таких как уран и плутоний, в качестве топлива в реактор будут загружаться дейтерий и тритий, после чего с помощью электричества конструкция будет разогреваться до температур. Главная» Новости» Симпозиум по термоядерному синтезу 2024. Но созданный холодный термоядерный синтез своими руками Иван Степанович Филимоненко отказался устанавливать в подземных городах-убежищах для партийных руководителей страны. Американские учёные заявили? что они ещё ближе подошли к тому, чтобы сделать ядерный синтез — тот самый процесс, который «зажигает» звезды — жизнеспособным источником энергии. Поступили новости о том, что американским ученым из Национальной лаборатории Лоуренса удалось повторить термоядерный синтез, высвободив больше энергии, чем было затрачено на запуск реакции. Холодный ядерный синтез: истории из жизни, советы, новости.
Украина. Генератор Росси. Термоядерный, холодный синтез. Теория, технология.
Статья автора «Живой Космос» в Дзене: Холодный синтез — это мечта, над исполнением которой некоторые учёные трудятся уже несколько десятилетий. Почему научные группы, финансируемые Google и фондами США и Канады, не смогли получить реакции холодного ядерного синтеза ни одним из известных способов. Поступили новости о том, что американским ученым из Национальной лаборатории Лоуренса удалось повторить термоядерный синтез, высвободив больше энергии, чем было затрачено на запуск реакции. Холодный ядерный синтез: истории из жизни, советы, новости. Следует понимать, что холодный ядерный синтез на настольных аппаратах не только возможен, но и осуществлен, причем в нескольких версиях.
В Ливерморе совершили прорыв в получении термоядерной энергии
Газообразный дейтерий и гелий под давлением 100 атм. Поскольку единственным измеряемым параметром являлась разность температур между измерительной и контрольной ячейками, особое внимание уделялось термоизоляции ячеек от окружающей среды и друг от друга. Это достигалось в опытах по Флейшману-Понсу и Арате толстой строительной теплоизоляцией и заливкой щелей строительной пеной. В высокотемпературном опыте Росси использован теплоизолятор из пустотелых кварцевых нитей обшивка шаттла Буран и вентилируемой щелью между измерительной и контрольной ячейками. Описания экспериментов 0 Прежде всего, мы убедились, что мы в состоянии регистрировать мюоны.
Как оказалось, для этого можно использовать фотоаппарат или видеокамеру, например, ноутбука. Мы загрузили программу DECO на смартфоны и, согласно инструкции, заклеили изолентой их видеокамеры. Смартфоны прекрасно регистрировали мюоны, хотя, конечно, в час по чайной ложке ввиду малости объема видеоматрицы. Кроме того, использовался антикварный радиометр СРП-1 в соответствии с последней разработкой MIT во-первых, потому что этот датчик чувствительнее, быстрее и точнее, во-вторых, просто потому что было: Фиг.
Выходной каскад звукового усилителя СРП-1 подключен к звуковому входу нетбука, работавшего в качестве «самописца» для записи количества мюонов. На поверхности земли результаты у всех экспериментаторов были идентичными: при сравнении с данными по фактическому магнитному полю Земли за июль — август 2018 г. Кроме того, известен факт снижения интенсивности потока мюонов в зимнее время из-за взаимодействия их прародителей-пионов с более плотным воздухом. Однако измерения потоков мюонов в июле-августе и в декабре если и отличались, то незначительно, и на результаты экспериментов повлиять по нашему мнению не могли.
Измерения в глубине земли показали, естественно, снижение интенсивности потока мюонов фиг 3 , тем не менее, до глубин 100 м мюоны нами фиксировались. Нам ведь чем больше мюонов — тем лучше, а сколько их — вторая проблема, решаемая, только если будет обнаружен ХЯС. Были опробованы следующие эксперименты: а описание авторского эксперимента Фиг. Изготовлены независимо четыре экспериментальных установки по однотипной схеме: Фиг.
Ячейки были изготовлены максимально идентичными геометрически, но в измерительную ячейку заливался электролит на тяжелой воде: раствор 0,1 моля LiOH - в тяжёлой воде. В контрольную ячейку - в одном случае такой же щелочной раствор на обычной дистиллированной воде, а в другом — такой же раствор в дейтерированной воде, но в качестве катода использовалась такая же, как трубка из меш-металла по весу и форме, трубка из химически стойкой нержавеющей стали электрические параметры у всех ячеек совпадали. Ячейки во всех случаях были размещены в одном цилиндрическом корпусе с хорошей теплоизоляцией и снабжены включенными встречно термопарами, так что на регистрирующем приборе отображалась только разность температур между ячейками. Регистрация разности температур осуществлялась в стационарных условиях с помощью электронных самописцев Термодат разных моделей.
Также применялись мультиметры Fluke 189 и Fluke 187 в режиме протоколирования измерений с последующей передачей данных на комп с помощью дополнительного программного обеспечения FlukeView Forms. Результаты приведены в таблице 1. Есть только сумбурные и противоречащие друг другу устные описания от самого Росси и псевдо подробный патент US20140326711 A1. Однако, при всем при этом, его опыт неоднократно воспроизводился и вот самый простой и успешный аналог: Фиг.
Сначала реактор нагревается с помощью внешнего источника энергии, но при достижении определенной температуры реакция ХЯС должна начать производить избыточное тепло. За 90 минут работы реактор произвел сверх потребленной электроэнергии около 3МДж или 0,83 кВт-часа энергии. Это сравнимо с энергией, выделяемой при сгорании 70 г бензина. При этом уровень ионизирующих излучений радиации во время работы реактора не превысил фоновые показатели.
Основная польза этого эксперимента состоит в установлении факта, что нет опасной радиации. Можно смело экспериментировать и не заморачиваться счетчиками нейтронов. Реактор представляет собой простейшее устройство: два керамических стаканчика с последовательно включенными нагревателями одинакового омического сопротивления. Стаканчики закупорены пробками из ультратонкого пустотелого кварцевого волокна и помещены между пластинами из этого же материала.
Это обшивка шаттла Буран, выдерживает 1650 оС и не пропускает тепло.
В большинстве экспериментальных термоядерных реакторов используется советская конструкция в форме пончика, называемая токамаком. В такой установке используются мощные магнитные поля, чтобы удерживать облако плазмы или ионизированного газа при экстремальных температурах, достаточно высоких, чтобы атомы могли сливаться вместе. И, если все получится, SPARC станет первым устройством на Земле, достигшем состояния «горящей плазмы», при котором тепло от всех термоядерных реакций поддерживает термоядерный синтез без необходимости добавления в систему дополнительной энергии. И как раз тот факт, что никому никогда не удавалось использовать силу горящей плазмы в контролируемой реакции здесь, на Земле, требует проведения дополнительных исследований, прежде чем SPARC сможет начать работать. Строительство проекта SPARC, запущенного в 2018 году, планируется начать в июне следующего года, а сам реактор может заработать в 2025 году. Это намного раньше, чем крупнейший в мире проект термоядерной энергетики, известный как Международный термоядерный экспериментальный реактор ITER : он был задуман в 1985 году, в 2007 году началось проектирование, и, хотя строительство стартовало в 2013 году, ожидается, что первая термоядерная реакция в нем будет проведена в лучшем случае к 2035 году. В SPARC будут использоваться так называемые высокотемпературные сверхпроводящие магниты, которые стали коммерчески доступными только в последние три-пять лет — ощутимо позже, чем был спроектирован ИТЭР и началось его строительство. Для сравнения, сила магнитного поля Земли колеблется от 30 до 60 миллионных долей тесла. Предварительная схема ITER.
В семи новых исследованиях ученые описали результаты расчетов и моделирований суперкомпьютеров, лежащих в основе конструкции SPARC.
Считается, что две тонны гелия-3, разогретые в токамаке или стеллараторе модернизированный термоядерный реактор , могут дать столько же энергии, сколько 30 млн тонн нефти, сжигаемой в печах ТЭС. Если верить специалистам в области энергетики, лунных запасов гелия-3, необходимого для термоядерного синтеза, будет достаточно для обогрева и освещения Земли в течение следующих шести-семи тысяч лет. Правда, есть одна проблема. Некоторые физики считают применение гелия-3 в термоядерных реакторах неграмотным и настаивают на том, что все доводы в пользу этого элемента — обычная глупость. К китайскому опыту в этом направлении стоит приглядеться чуть внимательнее, поскольку физики из Поднебесной тестировали свой импульсный термоядерный реактор и повторяли опыты советских физиков. Однако российские учёные тем временем придумали, как из экспериментальной конструкции сделать пригодный к опытно-промышленному применению термоядерный реактор.
На токамаке реакторе, в котором разогретую плазму удерживают магнитные катушки Т-15МД российские учёные будут отрабатывать все процессы. Затем их масштабируют на реакторе ITER. Этот термоядерный реактор, строящийся сейчас на территории Франции, без опыта российских исследователей просто не запустится. Это значит, что без преувеличения жизни миллионов землян будущего зависят от российских физиков. Уже известно, что над проектом токамака Т-15МД трудятся лучшие специалисты Курчатовского института и Научно-исследовательского института электрофизической аппаратуры имени Ефремова, и, по сути, российские специалисты — единственные в своём роде: ни в одной другой стране мира попытки совладать с термоядерным синтезом не дошли до строительства реакторов подобного масштаба и типа, как в России. Инженер-атомщик Владимир Спиридонов в беседе с Лайфом отметил, что ни в США, ни в Европе, ни в Китае к разгадке секрета термоядерного синтеза пока не приблизились. Проблема та же, что и 30, и 40 лет назад.
Нормальный источник возбуждения реакции не найден, механизм удержания — тоже. Теоретически, у того, кто первым освоит термоядерный синтез, будет монополия на всё, что связано с электричеством. Энергия, выработанная термоядерными реакторами, даже по самым скромным подсчётам, должна стать дешевле атомной минимум в двадцать, а максимум в сто раз.
На практике американские учёные стреляют гранулами, содержащими водородное топливо, в пучок из почти 200 лазеров, создавая серию чрезвычайно быстрых повторяющихся взрывов со скоростью 50 раз в секунду. Энергия, полученная от нейтронов и альфа-частиц, извлекается в виде тепла, и это тепло является ключом к производству энергии. В данном случае речь идёт о выработке минимального количества энергии, очень далёкого от промышленных масштабов. Если точнее, этой энергии хватило бы на то, чтобы вскипятить 10 чайников воды.
Термоядерный синтез вышел на новый уровень: подробности
AngryDude666, Термоядерный синтез, это реакция синтеза, а не расщепления. Холодный термоядерный синтез новости. За одну реакцию термоядерного синтеза длительностью 5 секунд было получено 69 МДж энергии. С создания компактной термоядерной бомбы в 1953 г. и до 90-х СССР был лидером в этой гонке, а США выступали в роли догоняющего. Новости о горячем синтезе теперь разрешено публиковать, потому что идет коммерциализация холодного синтеза. Американские учёные заявили? что они ещё ближе подошли к тому, чтобы сделать ядерный синтез — тот самый процесс, который «зажигает» звезды — жизнеспособным источником энергии. Недавно Россия отправила в Европу катушку, которая будет вставлена в экспериментальную установку холодного синтеза.
Термоядерную установку, у которой нет аналогов в мире, запустили в Курчатовском институте
Деятельность академика была возобновлена только в восьмидесятые годы. В 1989-ом начали изготавливать опытные образцы. Был создан дуговой реактор холодного термоядерного синтеза для подавления радиации. Также в Челябинской области было сконструировано несколько установок, но в работе они не были. Даже в Чернобыле не пользовались установкой с термоядерным синтезом холодным. А ученый опять был уволен с работы. Жизнь на Родине В нашей стране не собирались развивать открытия ученого Филимоненко.
Холодный термоядерный синтез, установка которого была завершена, могли бы продать за границу. Говорили, что в семидесятые годы кто-то вывез в Европу документы по установкам Филимоненко. Но у ученых за рубежом ничего не получилось, потому что Иван Степанович специально не дописал данные, по которым можно было создать реактор на холодном термоядерном синтезе. Ему делали выгодные предложения, но он — патриот. Лучше будет жить в нищете, но в своей стране. У Филимоненко есть собственный огород, который приносит урожай четыре раза в год, так как физик использует пленку, которую сам создал.
Однако ее никто не вводит в производство. Гипотеза Авраменко Этот ученый-уфолог посвятил свою жизнь изучению плазмы. Авраменко Римлий Федорович хотел создать плазменный генератор в качестве альтернативы современным источникам энергии. В 1991 году в лаборатории он проводил опыты по образованию шаровой молнии. А плазма, которая из нее выстреливалась, расходовала энергии намного больше. Ученый предлагал этот плазмоид использовать для обороны против ракет.
Испытания были проведены на военном полигоне. Действие такого плазмоида могло бы помочь при борьбе с астероидами, которые грозят катастрофой. Разработка Авраменко также не получила продолжения, а почему — никто не знает. Схватка жизни с радиацией Более сорока лет назад существовала секретная организация «Красная звезда», руководил которой И. Он со своей группой проводил разработки комплекса жизненного обеспечения для полетов на Марс. Он разработал термоядерный синтез холодный для своей установки.
Последняя, в свою очередь, должна была стать двигателем для космических кораблей. Но когда был верифицирован реактор холодного термоядерного синтеза, стало понятно, что он может помочь и на Земле. С помощью этого открытия можно обезвреживать изотопы и избежать ядерного взрыва. Но созданный холодный термоядерный синтез своими руками Иван Степанович Филимоненко отказался устанавливать в подземных городах-убежищах для партийных руководителей страны. Но их сдерживало то, что отсутствовала подобная установка, которая бы смогла защитить от воздействия радиации. На то время прочно был связан с фамилией Филимоненко холодный термоядерный синтез.
Реактор вырабатывал чистую энергию, что позволило бы защитить партийную верхушку от радиационного заражения. Отказавшись предоставить в руки власти свои разработки, ученый не дал руководству страны «козыря», в случае если бы началась ядерная война.
Токамак представляет собой устройство, которое может генерировать сильное магнитное поле. Когда материал нагревается до очень высокой температуры, он превращается в плазму, в результате электроны отделяются от атома и превращаются в свободно движущиеся заряженные частицы, которые удерживаются сильным магнитным полем. В Хэфэе испытывали такомак EAST, который представляет собой модификацию установки, созданной в 90-х годах при сотрудничестве с Россией. В запущенном в Китае реакторе термоядерного синтеза использовалось достижение российских ученых, создавших устройство, отслеживающее температуру плазмы.
Суть этих комментариев сводилась к тому, что якобы 30 лет назад уже было окончательно и бесповоротно доказано, что холодного синтеза на белом свете не существует, и вот спустя 30 лет «нормальными» учёными при финансировании не кого-нибудь, а самой Google был окончательно вбит ещё один гвоздь в крышку гроба лженаучного направления, видимо, для профилактики, чтобы оно случайно не воскресло и не заразило неокрепшие умы научной молодежи. В действительности ситуация вокруг холодного ядерного синтеза в 2019 году была совсем иной. В феврале 2019 года были опубликованы результаты положительной государственной экспертизы в Южной Корее российской технологии микробиологической трансмутации жидких радиоактивных отходов, разработанной под руководством Аллы Александровны Корниловой из МГУ им. Ломоносова см. An Experiment in Reducing the Radioactivity of Radionuclide 137Cs with Multi-component Microorganisms of 10 Strains , в Индии была восстановлена государственная программа по холодному ядерному синтезу, а в рамках подготовки программы развития новых технологий ЕС по итогам конкурса были отобраны более 50 проектов по холодному ядерному синтезу и многое-многое другое. К 2019 году были опубликованы документально подтвержденные результаты расследований, которые показали откровенно политизированный характер травли Мартина Флейшмана, Стенли Понса и других исследователей холодного синтеза, главными мотивами которых были финансовые интересы и зависть. Более того, как показала прошедшая в Москве 23 марта 2019 года мемориальная конференция «Холодному синтезу — 30 лет: итоги и перспективы», в которой приняли участие известные российские исследователи, уже в начале 1990-х годов вопрос о реальности феномена холодного ядерного синтеза не стоял, так как надежные подтверждения его существования были получены ещё в советское время в ведущих научных центрах Министерства среднего машиностроения и Академии наук СССР. Для Государственного комитета по науке и технике в 1990 году академиками А. Барабошкиным и Б.
Дерягиным был разработан проект государственной программы по исследованию холодного синтеза, которая не была реализована из-за распада СССР. Кстати, Мартин Флейшман и Стэнли Понс признавали приоритет группы Бориса Дерягина в получении реакций холодного ядерного синтеза, полученных при раскалывании дейтерированного льда в 1986 году. Но обо всём по порядку. Для начала попробуем разобраться, почему же «группе Google» не удалось запустить холодный ядерный синтез при использовании трёх, казалось бы, классических способов, которые были неоднократно воспроизведены за прошедшие 30 лет и основные условия воспроизводимости результатов для которых были давно установлены. За разъяснением причин этого мы обратились к известному российскому исследователю холодного ядерного синтеза ведущему технологу Института геологии и минералогии СО РАН имени академика В.
Но в обоих ядрах сидит по одному протону, а они заряжены и как положено одноименным зарядам, они отталкиваются. Чтобы это отталкивание преодолеть, надо чтобы ядра летали с высокой скоростью, т. Нашли множество препятствий, часть преодолели. Остальные, причем числом по-боле, термоядерщики продолжают успешно преодолевать, им еще лет на 100 хватит. Хорошо бы это отталкивание как-то ликвидировать убить без разогрева. В 1954 г. Зельдович умудрился опубликовать в Докладах Академии Наук маленькую заметку, что отталкивание можно убить с помощью мю-мезонов мюонов. Подробная статья Зельдовича и Сахарова, написанная задолго до этого, но не пропускаемая Главлитом это вам не академическая комиссия по лженауке, это было серьезно , появилась в Журнале экспериментальной и теоретической физики в 1957 г. Мысль простая: отрицательно заряженный мюон притягивается к протону, он в 200 раз тяжелее электрона и радиус его орбиты в 200 раз меньше, чем у атома водорода. Это, конечно, почти в 103 раз больше, чем 1 ферми, но вероятность реакции резко возрастает. Более того, в Дубне обнаружили возможность образования мезомолекул мю-мезонных молекул , в которых тритий и дейтерий в присутствии мюона почти сливаются. И в Дубне, и в Гатчине, - да и везде где на ускорителях рождали медленные мюоны, явление было блестяще подтверждено. Итак, ХЯС на основе мюонного катализа подтвержден корифеями ядерной физики экспериментально 60 лет назад. Единственный маааленький недостаток этого реально наблюдаемого синтеза — использование ускорителя резко снижает общий КПД: полученная энергия намного меньше затраченной. Одновременно у разных исследователей появилась идея заменить ускоритель совершенно бесплатными природными мезонами. Помимо вполне реального механизма мюонного катализа за последние три десятилетия неоднократно появлялись сообщения об успешной демонстрации холодного синтеза в условиях взаимодействия ядер изотопов водорода внутри металлической матрицы или на поверхности твёрдого тела. Например, были надежды, что в твердых телах из-за электронного окружения отталкивание будет слабее. Или в сонолюминесценции --- ультразвуком можно в жидкости родить микропузырьки, которые настолько малы, что будут схлопываться. В процессе схлопывания скорости могут быть сильно сверхзвуковыми. Жидкость начинает светиться. Или если крошить кристаллы, то возникают высокие напряжения, ускоряющие поглощенные в кристаллах дейтерий и тритий. Первые сообщения такого рода были связаны с именами маститых электрохимиков не физиков Флейшмана и Понса, которые много лет изучали особенности электролиза тяжёлой воды в установке с палладиевым катодом. На протяжении последних десятка лет поиски условий протекания «холодного синтеза» сдвинулись от электрохимических опытов и электрического разогрева образцов к «сухим» экспериментам, в которых осуществляется проникновение ядер дейтерия в кристаллическую структуру металлов переходных элементов — палладия, никеля, платины. Эти опыты относительно просты и представляются более воспроизводимыми, чем ранее упомянутые. В отличие от столкновения «голых» ядер в горячей плазме, где энергия столкновения должна преодолеть кулоновский барьер, при проникновении ядра дейтерия в кристаллическую решётку металла кулоновский барьер между ядрами модифицируется экранирующим действием электронов атомных оболочек и электронами проводимости. Обращает внимание также «рыхлость» ядра дейтрона, объём которого в 125 раз превышает объём протона. Электрон атома в нижнем, невозбужденном S-состоянии имеет высокую вероятность оказаться внутри ядра, что приводит к эффективному исчезновению заряда ядра, которое в этом случае иногда называют «динейтроном». Можно говорить о том, что атом дейтерия вообще какую-то часть времени находится в таком «свёрнутом» нейтральном состоянии, в котором он способен проникать в другие ядра — в том числе в ядро другого дейтрона. Дополнительным фактором, влияющим на вероятность сближения ядер в кристаллической решетке, служат колебания и ударные, а также термические волны Введение. Исходная посылка: предполагаем, что из уже имеющихся законов природы и свойств материалов можно сложить новый пазл и получить ХЯС. Потому, что ничто другое проверить невозможно. Мы НЕ претендовали на открытие новых законов природы это дело фундаментальной физики , а также Святого Духа, Всемирного Разума и т. Азы которой все присутствующие проходили в школе, а некоторые изучали более глубоко в вузе. Это т.
Регистрация
- «Очевидно, что авторы темнят»
- Холодный ядерный синтез — научная сенсация или фарс?
- Как это работает
- BERES • Отчет по "народной проверке" холодного ядерного синтеза (ХЯС)
- Термоядерный синтез: ещё один шаг | Hi-Tech - Новости Казахстана и мира на сегодня
- Термоядерный синтез вышел на новый уровень: подробности - Hi-Tech
Холодный ядерный синтез
Несмотря на то что многие считают эту публикацию Керврана первоапрельской шуткой, некоторые ученые всерьез заинтересовались проблемой холодного ядерного синтеза. Термоядерный, холодный синтез. Теория, технология.» на канале «Теплое Событие» в хорошем качестве, опубликованное 11 декабря 2023 г. 20:24 длительностью 00:15:26 на видеохостинге RUTUBE. Академик Роберт Нигматулин поясняет: «Вообще-то неправильно называть пузырьковый термояд разновидностью «холодного термоядерного синтеза». Главная» Новости» Холодный ядерный синтез новости последние. Хорошие новости продолжают поступать в области исследований ядерного синтеза.
Холодный ядерный синтез перестал быть лженаукой в ЕС
Что такое холодный термоядерный синтез? Холодный термоядерный синтез: принцип | Ядерный синтез (часто говорят «термоядерный синтез») — это реакция, в которой легкие ядра при столкновении объединяются в одно тяжелое ядро. |
Первый термоядерный реактор может заработать уже в 2025 году | Следует понимать, что холодный ядерный синтез на настольных аппаратах не только возможен, но и осуществлен, причем в нескольких версиях. |
Холодный ядерный синтез: истории из жизни, советы, новости, юмор и картинки — Все посты | Пикабу | Холодный ядерный синтез. Поступили новости о том, что американским ученым из Национальной лаборатории Лоуренса удалось повторить термоядерный синтез, высвободив больше энергии, чем было затрачено на запуск реакции. |
Холодный синтез: самое известное физическое мошенничество | В Китае на несколько часов запустили реактор термоядерного синтеза, или так называемую установку токамак. |
Холодный синтез. Миф или лженаука? | Проблемы термояда обсудили на 50‑й Международной конференции по физике плазмы и управляемому термоядерному синтезу в Звенигороде 20–24 марта. |
Deneum: как заниматься холодным ядерным синтезом и бороться с сомнениями ученых
Иоффе, академик, председатель Комиссии по борьбе со лженаукой при Президиуме РАН «В конце 2022 года мировой научной сенсацией стало сообщение о достижении существенного успеха в попытках реализации лазерного термоядерного синтеза — Ливерморская лаборатория США заявила о достижении существенного превышения выделившейся энергии ядерного синтеза над поглощённой энергией световых лазерных импульсов, используемых для обжатия мишени. Разумеется, до рентабельной термоядерной энергетики остается неопределенно долгий путь, поскольку поглощенная энергия имеет порядок одного процента от полной энергии света лазеров, не говоря о низком КПД самих лазеров. К этому нужно добавить безмерную стоимость оборудования и затраты на его содержание». Семихатов Алексей Михайлович доктор физико-математических наук, заведующий лабораторией, Физический институт им. Лебедева РАН «Отмечу недавний успех в лазерном термоядерном синтезе, где радиационное сжатие смеси дейтерия и трития позволило запустить реакцию ядерного синтеза с выделением большей энергии, чем было доставлено в образец. Это научное достижение, показывающее, что достигнуто неплохое понимание поведения экстремально сжимаемой материи.
Однако, разумеется, такие реакции могут генерировать гораздо больше энергии, чем им требуется — и Солнце тому прямое подтверждение.
Также немаловажный плюс термоядерного синтеза — полное отсутствие вредных отходов. Не производятся парниковые газы, не загрязняется атмосфера, не нужно утилизировать радиоактивное топливо, и даже при аварии ничего серьезнее выброса водорода в атмосферу, который и является топливом для термоядерного реактора, не будет. При этом термоядерный синтез может быть настолько эффективным, что текущих запасов водорода на Земле хватит, чтобы удовлетворить все потребности человечества в энергии на миллионы лет вперед. Нам нужно решение проблемы глобального потепления — иначе цивилизация окажется в беде. Похоже, переход на термоядерную электроэнергетику может помочь исправить ситуацию». Слева — простейшая реакция термоядерного синтеза с использованием дейтерия и трития тяжелого водорода.
Справа — схема токамака. В большинстве экспериментальных термоядерных реакторов используется советская конструкция в форме пончика, называемая токамаком. В такой установке используются мощные магнитные поля, чтобы удерживать облако плазмы или ионизированного газа при экстремальных температурах, достаточно высоких, чтобы атомы могли сливаться вместе.
Фото 6. Схемы ядерных электрических оболочек протона слева и антипротона справа без указания гравитационых. В полусферических слоях рождается зона холодной безмассовой плазмы, удерживая и центрируя положения магнитных монополей ГЭММ. Подобная полусфера внешней оболочки в совокупности с полусферой нижней положительной части оболочки определяет положительный заряд протона. Энергия, обеспечивающая протон массой, электрическим зарядом, спином, магнитным моментом, размером и другими параметрами, определяется суммарной энергией пяти магнитных монополей ГЭММ, пульсирующих с разной частотой. Даже две внешние положительные оболочки порождают такой недостаточный положительный отрицательный электрический заряд из зёрен-потенциалов на поверхности протона антипротона , который один электрон позитрон в атоме водорода антиводорода перекрывает полностью и даже остаётся излишек — образуется атом водорода с достаточно большой энергией сродства к электрону, который способен присоединить ещё один протон с образованием молекулярного иона.
Поэтому более стабильна молекула водорода. Превращения структуры протона в движении при увеличении энергии на ускорителях и коллайдерах. Вплоть до настоящего времени расчёт увеличения энергии протонов за счёт их разгона в электрическом поле идёт по формулам СТО А. Эйнштейна, то есть с учётом релятивистского эффекта зависимости массы частицы от скорости. Это грубая ошибка вызвана тем, что в природе нет никакой массы — ни массы покоя, ни релятивисткой массы в СТО. А физические процессы увеличения массы даются лишь на веру математическими формулами Лоренца, не имея под собой никакого физического обоснования, в том числе определения массы, как физической категории. Таким образом, нарушается основной классический принцип познания законов природы на основе экспериментов, а не из математики, ограниченной неполнотой по Геделю. Циклотроны позволяют ускорять протоны до энергий примерно 20 МэВ. Дальнейшее их ускорение в циклотроне ограничивается релятивистским возрастанием массы со скоростью, что приводит к увеличению периода обращения он пропорционален массе и синхронизм нарушается.
Реально, в природе увеличение внутренней энергии протона идёт по формуле Планка, то есть путём увеличения частоты магнитного монополя и количества в замкнутых вихронах ГЭММ каждой из его оболочек, а также числом таких оболочек. Поэтому ускоряясь в электрическом поле, протон фото 6 поэтапно превращается в дейтрон фото 7 , тритон фото 16 и т. Превращения протона в плазмоиде Вачаева 31 Высокоинтенсивные электроимпульсные короткие 5—50 микросекунд разряды-процессы в плазмоиде Вачаева реализуют переходы протон-дейтрон-тритон-гелий путём концепции возбуждение-распад-синтез. Этот же метод позволяет получить из протонов воды почти всю таблицу Менделеева химических элементов. Атомный и ядерный аналог процессов в диапазоне, частот на которых работает реактор Вачаева реализован на 30—60 МГц производство электроэнергии и 30—60 ГГц холодный ядерный распад-синтез атомных ядер химических элементов в стабильном состоянии. Продолжительность импульса разряда, которая определяет длину движения кластера воды для достижения синтеза ядер элементов, колеблется от 20…30 до 2000…3000 микросекунд. Таким образом, наличие дейтронов и тритонов 32 в отработанных водах указывает на механизм их избытка при превращениях протона в движении в плазмоиде на пути четверть волновода вышеуказанных частот и тока в импульсе для реализации синтеза атомных ядер. А также доказывает причастность к таким переходам увеличение заряда энергии магнитного монополя через произведение постоянной Планка на частоту — переход с увеличением энергии в новый более тяжёлый элемент. Внешний слой оболочки нейтрона антинейтрона имеет характерную структуру волноводов и размер 9,1 х 10—13 см, а также определяет спин частицы и его знак электрического заряда — у протона он положительный, у антипротона отрицательный.
Один из вихронов половины внешней оболочки в нейтроне при распаде улетает и строит электрон или позитрон, а оставшийся формирует внешнюю оболочку протона 33 или антипротона со структурой мюона. Подобным же образом, как и на внешней оболочке протона, формируется заряд электрическим положительным потенциалом атомных ядер всех последующих химических элементов. Аннигиляция протона и его античастицы происходит аналогично, как и в случаях нейтрона и антинейтрона, электрона и позитрона. Таким же образом вскрывается внешняя оболочка запорный слой со структурой мюона протона. Самыми последними вылетают вихроны, образующие центральную и более высокоэнергетическую высокочастотную К-оболочку. Этот процесс — процесс электромагнитной вихревой эксплозии с превращением зарядов покоя двух противоположных частиц в заряды движения, как и в случае аннигиляции электрона и позитрона, то есть в безмассовую форму энергии движения фотонов — играет самую главную роль в производстве энергии звёзд и планет. У протона, сформированная оставшимся полярным вихроном часть внешней оболочки с положительными волноводами и открытая часть средней фото 6 порождает его внешнее положительно заряженное поле, препятствующее вылету вихронов с внутренних оболочек и их возможности последующего распада — это наиболее стабильная частица из числа всех известных. Благодаря одинаковым структурам внешних оболочек, с параллельным спином, тепловой протон может легко захватывать тепловой нейтрон с образованием дейтрона фото 7 , посредством слияния-объединения связано-замкнутых дебройлевских квантов-вихронов. После пересечения и преобразования вихронами их фазовых объёмов происходит процесс энергетического упорядочивания внутренних оболочек при рождении новой микрочастицы с излучением-сбросом гамма-кванта с энергией 2,2 Мэв.
В процессе слияния этих нуклонов суммарный заряд сфер-источников ГЭММ всех оболочек дейтрона увеличивается, размер — уменьшается, частота и число оболочек — изменяются. Фото 7. Схема рождения дейтрона. Слева протон, затем нейтрон, справа дейтрон. Спин и электрический заряд дейтрона равен единице, суммарный заряд энергии сфер-источников ГЭММ всех оболочек увеличивается вдвое, средний диаметр — 4,1 х 10—13 см, а масса в СИ — 1875 Мэв равна удвоенной массе нуклонов без энергии вылетевшего гамма-кванта. Эта ядерная реакция является знаковой по формуле — охлаждение с образованием вокруг движущихся микрочастиц связано-замкнутых дебройлевских вихронов, ориентация спинов, дрейф, захват-синтез с расширением внутреннего дискретного микропространства на величину, соответствующую энергии 2,2 Мэв, преобразование и снятие возбуждения и характеризует последовательное взаимодействие быстрых ядерных вихронов — сброс освободившейся энергии в виде вылета свободного биполярного вихрона в форме фотона с энергией 2,2 Мэв. Такие преобразования внутренней структуры промежуточной составной частицы, образованной слиянием одинаковых дебройлевских гравитационных монополей, дополняют свойства ядерных вихронов. Внутренние вихроны, вылетев в такое пространство после взаимодействия и изменения в общем фазовом объёме, по новому образуют вложенные друг в друга биполярные оболочки, и уже с другим частотным спектром. Эта ядерная реакция экзотермическая — лишняя освободившаяся энергия, как и в случае возбуждённого атома, сбрасывается в виде ядерного гамма-излучения.
При этом надо отметить, что эта ядерная реакция является первой, порождающей ещё стабильный тяжёлый изотоп водорода-дейтрон. Уже вторая реакция антипротона с дейтроном или наоборот даёт нестабильный изотоп сверхтяжёлого изотопа водорода — тритон тритий. Это связано с тем, что стабильных ядер легче протона в нашей природе на поверхности Земли быть не может. Однако ядерно-ионные реакции с участием положительных и отрицательных тяжёлых ядер, начиная с титана, идут в природе и в некоторых экспериментах 34. В таких случаях, которые проверены и достоверно установлены, рождается чуть ли не вся таблица элементов из одного элемента меди. Аналогичные процессы с внутриядерной перестройкой вихронов происходят при внутреннем и внешнем возбуждении вихронов, которое приводит к делению и распаду тяжёлых ядер с образованием и вылетом двух более лёгких ядер и нескольких лёгких элементарных частиц. Нейтроны с тепловыми энергиями менее 1 Мэв, также легко, как и в случае с протоном, проникают в ядра всех химических элементов с образованием промежуточного возбуждённого ядра. Облучение веществ тепловыми нейтронами позволяет проводить элементный анализ — это так называемый и широко распространенный нейтронно-активационный анализ образцов. А захват нейтронов ядрами других элементов с последующим бета-распадом, известный под названием быстрый R — и медленный S-процесс, происходящий в звёздах, вносят определённый вклад в производство более тяжёлых химических элементов во всей Вселенной.
Таким образом, геометрическую структуру и физические свойства нейтронов и протонов определяют: количество оболочек фото 4—5 — 6 и энергетически-частотный состав внутренних вихронов. А за их стабильность, заряд и спин отвечают внешние оболочки и внутреннее состояние внешнего полярного вихрона в стационарном поле нуклона. Масса покоя в системе СИ нейтрона и антинейтрона равна 939,57 Мэв. Центральная ядерная оболочка типа К-ноль мезон с наибольшей кривизной и частотой, обладает большей энергией, чем внешние и даёт больший вклад в индукцию заряда массы покоя нейтрона. Сродство структуры фотона с оболочечной структурой нейтрона и протона подтверждают экспериментальные исследования рассеяния жестких электронов и гамма-квантов на протонах, которые позволили обнаружить в них схожее пространственное распределение плотности электрического заряда, а также найти электрическую и магнитную поляризуемости их объёма. Подтверждение указанной структуры нуклонов находим на каждом шагу анализа распадов и взаимодействий, особенно частица-античастица, а также легких и тяжёлых элементарных частиц, следующих из известной таблицы изотопов 35. Так, например, с участием лептонов — мюонный захват протоном с последующим образованием нейтрона и мюонного нейтрино. Другие источники обнаружены во всех генераторах холодного ядерного синтеза LENR при ионизации внешних оболочек ядер тяжёлых элементов. Когда атмосфера пульсара уже перенасыщена нейтронами и плотность слоя прилегающего непосредственно к поверхности ядра звезды достигает критического, то спектр нейтронов начинает обогащаться более тяжёлыми нейтральными ядрами.
Другой путь производства и накопления нейтральных ядер происходит при вращении ядер звёзд и планет путём индукции механических гипервихронов, состоящего из гравитационного гипермонополя. Для сохранения средней энергии, в связи с тем, что в таких системах, не может произойти перезарядка индуктированного монополя на противоположный, происходит квантовый переход с образованием электромагнитного гипервихрона, квантовые переходы в котором доступны этой системе массы. При его квантовых переходах электрический гипермонополь уже способен сбрасывать излишнюю индуктированную энергию в виде излучения мощных «тяжёлых» магнитных монополей, которые взаимодействуя с плотными слоями нейтронов преобразуют их в нейтральные ядра с весом в две, три или четыре атомные единицы и т. Структура этих частиц — центрально-оболочечная из волноводов зёрен-электропотенциалов и гравпотенциалов, причём каждая оболочка вложена одна в другую таким образом, что над отрицательной полусферой внутренней находится внешняя полусфера положительных волноводов, как и в нейтроне — фото 4. Фото 8. Оболочечная структура атомных ядер из оболочек ГЭМД. Каждая внутренняя оболочка заполняется более энергетическими вихронами, по сравнению с предыдущей внешней, то есть в терминах СИ, по мере увеличения атомного веса идёт заполнение центральных оболочек более тяжёлыми мезонами типа ипсилон Y cм. Такой процесс принципиально отличается от заполнения атомных оболочек частицами одного электрического знака электронов, САП с полуцелым спином. Таким образом идёт заполнение центра сферы нейтральной частицы вплоть до ядра кальция.
На поверхности ядра звезды нейтральные ядра достаточно стабильны, но по мере заполнения ими атмосферы всего прилегающего пространства, дальнейшего уплотнения и вытеснения по радиусу в наиболее слабые гравитационные пояса звезды, начинается распад внешних оболочек фото 9 с образованием положительных или отрицательных ядер с помощью ядерно-мезонной плазмы. Это обусловлено тем, что появляется возможность у двух магнитных монополей внешней оболочки в отличие от внутренних оболочек пульсировать в свободное пространство. Ядерно-мезонная плазма. При распаде по каналу бета-плюс образуются отрицательно заряженные ядра, которые практически мгновенно же объединяются синтез ядер с положительными. При энергии такого излучения от 0,4 до 0,9 эв с частотой 1—2 х 10 13 Гц и длине волны 1,4 — 3 микрона, сфера заряда энергии имплозией способна проникать даже в атомное ядро имея размер около 10—14 см. Этот процесс идёт наиболее интенсивно, как показывают результаты «выстрелов» С. Адаменко, при определённых условиях и в твёрдом теле. Фото 9. Деление внешней оболочки и распад После этого следует движение к поверхности и долгая стабилизация-распад с образованием уже известных ядер химических элементов.
Подтверждением такой схемы жизни нейтральных ядер свидетельствуют проблемы, возникающие при полной обдирке от атомных электронов тяжёлых ядер при подготовке пучков тяжёлых многозарядных ионов. В этом случае, после неоднократного разделения пучка в магнитном поле на положительный, отрицательный и нейтральный, последний необходимый пучок опять содержит все эти компоненты. Реакции, которые приводятся в работах А. Кладова на основе капельной модели ядра, а также в работах А. Вачаева, могут идти только как ядерно-ионные, то есть ядра при распаде могут быть как положительные, так и отрицательные. К настоящему времени на поверхности Земли не осталось ни одного типа нейтральных ядер атомов химических элементов кроме нейтрона, что свидетельствует об их весьма коротком периоде полураспада на этом гравитационном поясе. Однако имеется от 3000 до 7000 радиоактивных изотопов, до сих пор находящихся в стадии стабилизации, то есть на пути превращения в стабильные изотопы, путём радиоактивного распада. Распад тяжёлых нейтральных ядер идёт с образованием как положительных, так и отрицательных ядер. Распад лёгких нейтральных ядер идёт по схеме деления внешней оболочки на два замкнутых вихрона с образованием двух оболочек одной внутренней и одной внешней, фото 6 волноводов преимущественно положительных потенциалов, образующих его спин и внешнее электрическое поле ядра, запирающее его дальнейший спонтанный распад.
Заряд электрическим потенциалом ядра, определяющий число электронов в нейтральном атоме формируется только внешней оболочкой, которая по мере увеличения тяжести ядра меняется на более тяжёлые мезоны. Внутренние оболочки попарно нейтрализованы противоположно заряженными — фото 4 и своей структурой обновления гравитационных контуров определяют лишь суммарную массу частицы, которая, является продуктом взаимодействия противоположных полей атомного ядра и гравитационного поля Земли. Во внешнем пространстве атома два магнитных монополя сферы двух внешних оболочек формирует положительное электрическое поле, рождённое с частотой накачки на три десятичных порядка больше, чем это делают электроны на атомных оболочках, что и определяет количество присоединённых электронов в нейтральном атоме, чтобы полностью скомпенсировать на ноль своё собственное внешнее поле. В целом, таким образом сформированная внешняя ядерная оболочка, имеет форму сферы с положительным зарядом электрического потенциала, соответствующим атомному номеру стабильного химического элемента. Этот процесс очень сложный и заключается в том, чтобы каждое положительное зерно-потенциала было уничтожено отрицательным зерном потенциалом волновода электрона.
Реактор ITER — это лишь первый шаг. Его размеры велики, но по мере развития технологии такая станция станет меньше. Возможно, со временем размеры всего комплекса уменьшат до размеров офисного здания Владимир Спиридонов Особенность термоядерного синтеза заключается в том, что за сутки таких импульсов может быть десять, а при должном умении — сто и даже более тысячи.
После перемножения импульсов на мегаватты выработанной энергии получится, что самая маленькая термоядерная электростанция в разы производительнее атомной. К тому же дейтерий и тритий, используемые в качестве топлива, существенно экологичнее изотопов урана и плутония, да и термоядерный реактор в теории почти не надо "перезаряжать". По сути, термоядерная электроэнергетика — "святой Грааль" человечества. Она способна решить все энергетические проблемы на ближайшие несколько столетий вперёд. Во-первых, после появления термоядерной энергии исчезнет проблема радиационной опасности объектов. Проще говоря, никакого "второго Чернобыля" или "Фукусимы" и близко произойти не сможет. Во-вторых, развитие термоядерного синтеза позволит ликвидировать энергетический голод человечества. Стремительный рост населения спровоцировал и дефицит энергии.
Сейчас, по прогнозам специалистов, потребность человечества в электроэнергии оценивается в 10 ТВт — почти в пять раз больше, чем наука и промышленность могут предложить. В-третьих, термоядерный синтез почти сразу станет причиной освоения... Дело в том, что, несмотря на достаточное количество дейтерия и трития, идеальным топливом для термоядерных реакторов будущего является гелий-3 — самый лёгкий изотоп гелия. Его практически нет в чистом виде на Земле — для его наработки специальным образом обрабатывают тритий, а процесс этот стоит так дорого, что промышленное производство гелия-3 крайне невыгодно и потому лишено смысла. Идеальным местом добычи гелия-3 является именно Луна.
Читайте также:
- Выбор сделан - токамак плюс - Российская газета
- Российский ученый раскрыл секреты искусственного солнца, которое зажгли в Китае
- Украина. Генератор Росси. Термоядерный, холодный синтез. Теория, технология.
- Холодный ядерный синтез
- Холодный синтез: желаемое или действительное?
- Выбор сделан - токамак плюс
В защиту холодного ядерного синтеза (ХЯС)
Его собирают из шести цилиндрических модулей, укладывая один на другой. Соленоид стабилизирует шнур из плазмы во время работы установки. В феврале Япония доставила последнюю ниобийоловянную катушку тороидального поля. Система шинопроводов, которая собирается из сегментов до 12 м длиной и весом 2—4 т, соединит электросеть с магнитной системой реактора и устройствами быстрого вывода энергии, а также с оборудованием для нагрева плазмы. Оно не имеет аналогов в мире. Эти аппараты обеспечивают защиту сверхпроводниковых катушек магнитной системы в случае перехода сверхпроводника в резистивное близкое к критическому состояние и являются важными компонентами защиты.
Четыре уже доставлены на стройплощадку.
Еще одна проблема возникла при сварке секторов вакуумной камеры. При проектировании ИТЭРа первую стенку решили делать из бериллия. Сейчас российское термоядерное сообщество анализирует, насколько оправданна замена материала. К середине апреля мы выработаем позицию и представим ее на следующем совете ИТЭР. Смею вас заверить, дискуссии будут глубокими, фундаментальными и наше мнение будет учтено».
Физпуск состоялся еще 18 мая 2021 года. А вот с энергопуском возникли организационные проблемы.
Группа использовала мензурку с жидким ацетоном размером с два-три стакана размеры «ядерного реактора» особенно шокируют, правда в иностранной прессе сравнение производится с кофейными чашками. Сквозь жидкость интенсивно пропускались звуковые волны, производя эффект, известный в физике как акустическая кавитация, следствием которой является сонолюминесценция что-то наподобие «освещения, спровоцированного звуком». Во время кавитации в жидкости появлялись маленькие пузыри, которые увеличивались до двух миллиметров в диаметре и взрывались. Взрывы сопровождались вспышками света и выделением энергии.
Но — в чём, собственно, и фокус — температура внутри пузырьков в момент взрыва достигала 10 миллионов градусов по Кельвину это сопоставимо с температурой ядра Солнца , а выделяемой энергии, по утверждению экспериментаторов, достаточно для осуществления термоядерного синтеза. Естественно, говоря о выделении энергии и возможном осуществлении ядерного синтеза, учёные фактически заявляют, что ими был зафиксирован продукт реакции — тритий. На этом этапе и «подключается» «научная общественность», которая требует доказательств: «Докажите, что реакция была». Кроме того, очевидно, что речь идёт о предметах такого калибра, что приходится брать в расчёт погрешности вычислительных и измерительных приборов. Так вот, именно на этом этапе первооткрывателей уже успели «обломать», сказав, что приборы ничего такого особенного не зафиксировали. Saltmarsh , которые заявили: «Доказать, что пузырьки испускали нейтроны, не представляется возможным.
Кроме того, увеличение излучения не превышает один процент, что может объясняться фоновыми явлениями». На это революционеры ответили что-то наподобие «это у вас приборы плохие». Недолгая перебранка не помешала представить открытие на суд Science, который и собирает комментарии независимых ядерных физиков.
У нас ни малейшего представления, что мы получим. Я объясню на одном примере. Вот у вас есть атом кислорода, в нем восемь электронов крутятся вокруг ядра.
Если вы убираете один электрон, остаётся семь. Высокая энергия — это только один электрон. Вы убрали один электрон, и больше нет энергии электрона, есть только энергия ядра. Водород без одного электрона это уже не водород. Но кислород без одного электрона все еще остается кислородом. Промежуточное состояние высокой энергии имеет абсолютно другое поведение — вот что мы обнаружили.
Люди еще не могут осознать этого. Цитатат из видео «Реактор холодного синтеза» на YouTube Реактор холодного синтеза Андрес Ковач, изобретатель, основатель компании BroadBit Словакия : В этом проекте я ответственный за экспериментальную работу и теоретические разработки, и я возглавляю отдел, который будет разрабатывать теорию. Мы собираем все экспериментальные данные и проверяем, какие теории могут лучше всего объяснить то, что происходит. Это нам нужно для того, чтобы выработать рациональный подход к созданию реакторов. Что касается экспериментов, то мы проводим их уже более трех лет и получили интересные результаты, которые позволили нам продвинуться на следующий уровень. В нашей компании мы делаем несколько видов работ.
Это не имеет отношения к коммерции. Это имеет отношение к научному любопытству — мы хотим понять, как всё это работает, и открыть новые виды ядерной энергии. С точки зрения практики мы бы хотели иметь чистую и эффективную технологию. И на сегодняшней день существует ярко выраженная потребность в такой энергии. Поэтому мы бы хотели внести свой вклад. Если подходить к тому, что мы делаем, с точки зрения философии, то, я бы отметил следующее: в течение более 30 последних лет проводились эксперименты, которые подтвердили существующие теории.
Это означает, что уже есть нечто, что дает понимание о фундаментальных силах химических элементов и частиц. Это даёт нам возможность лучше понять, как функционирует природа. Знание имеет неоспоримое преимущество в том, что оно может объяснить, по каким законам живёт мир вокруг нас, каковы эти физические законы природы. А мудрость — это умение наилучшим образом использовать знания и научные открытия для рационального использования ресурсов. Мудрость нужна для того, чтобы выбрать, по какому пути идти дальше. Самая главная преграда, которую мы не можем преодолеть в наших научных изысканиях, — это условия, которые включают в себя допущение ошибок, появляющихся в процессе исследования.
Пока я занимался своей теоретической работой, я потратил много времени на исправление ошибок. Но в нашей повседневной жизни мы учимся на ошибках. Бытовало такое мнение, что на протяжении научной карьеры непозволительны никакие ошибки, и обсуждение научных ошибок вызывало огромное сопротивление у людей. Так что если ошибки случаются и никому не позволено говорить о них, то возникает всё больше и больше проблем. Поэтому мы должны открыто говорить о том, что есть правда, а что не правда, и не бояться исправлять ошибки. Я никогда не работал в Академии, я всегда делал свою карьеру в бизнесе и параллельно интересовался наукой.
Углубиться в научные разработки я смог благодаря моим сотрудникам, которые сделали важные открытия в физике, и они подтолкнули меня к тому, чем мы занимаемся сейчас, включая мои теоретические разработки. Физика состоит из конкретных вещей, которые мы можем доказать. Но одной теории, объясняющей всё, не существует.
Украина. Генератор Росси. Термоядерный, холодный синтез. Теория, технология.
В Ливерморе совершили прорыв в получении термоядерной энергии | Что подпитывает шумиху вокруг коммерческого термоядерного синтеза? |
Холодный ядерный синтез перестал быть лженаукой в ЕС | Новый атомный проект России – холодный ядерный синтез? объяснения поддерживали в новостях то, что называлось "холодным термоядерным синтезом" или "путаницей термоядерного синтеза".[32. |
Выбор сделан - токамак плюс - Российская газета | К маю 2000 г. на тему холодного термоядерного синтеза в открытой научной печати было опубликовано более 2 тыс. работ, из которых примерно 10 % содержали достоверные указания на наличие эффекта ХС. |
Термоядерный синтез: ещё один шаг | Hi-Tech - Новости Казахстана и мира на сегодня | Управляемый термоядерный синтез отличается от традиционной ядерной энергетики тем, что в последней используется реакция распада, в ходе которой из тяжёлых ядер получаются более лёгкие ядра. |
Кто сказал, что холодный синтез возможен?
- BERES • Отчет по "народной проверке" холодного ядерного синтеза (ХЯС)
- FT: американцы добились прироста чистой энергии в термоядерном синтезе и совершили прорыв
- О холодном синтезе... афёра, но для чего? - форум, дискуссии, обсуждение событий и новостей
- Холодный ядерный синтез — научная сенсация или фарс?
В защиту холодного ядерного синтеза (ХЯС)
Эксперимент будет произведён повторно, но до сих пор неясно, то ли это прорыв в ядерной физике, то ли это международный скандал. Вердикт будет вынесен 8 марта, в день публикации отчёта об эксперименте в научном журнале Science. Давненько физики всего мира не ждали с таким нетерпением очередного выпуска журнала Science. Публикации в нём предшествует заключение независимых экспертов, и допуск к печати приравнивается к официальному заявлению. Если подобные эксперименты, проведённые в других лабораториях и другими исследовательскими группами, подтвердят корректность сделанных вычислений, то открытие обречено как минимум на Нобелевскую премию, а человечество получит неиссякаемый источник чистой энергии, получение которой абсолютно безопасно для планеты. Если нет — то, увы, позор, прозябание первооткрывателей в нищете, алкоголизм непризнанных гениев, энергетический кризис в мире и прочие катаклизмы в планетарном масштабе. В общем, уж лучше б подтвердилось. Любопытно, что в ожидании вердикта Science серьёзные научные издания выдерживают долгую паузу. Академичный Scientific American два дня присматривался к новости, прежде чем довольно робко и со многими экивоками сообщить, что так называемая научная общественность scientific community очень прохладно отнеслась к заявлению, что означает обилие резких и жёстких комментариев, которые последуют в ближайшие несколько дней.
Профессор Лейхи: «Наши противники понимают, что отныне мир навсегда изменился» В отличие от него демократичная Nature, днём раньше описывая эксперимент, сравнила открытие с находкой Святого Грааля и весьма добродушно рассказала о ходе исследований. Большинство изданий позволяет себе лишь суховатые описания и несколько уклончивых комментариев — пресловутая scientific community вместе с российскими женщинами ждёт 8 марта. Откуда этот скепсис и что же, собственно, произошло? Считается, что «холодный синтез» — это типичный пример голословного заявления, некорректного «грязного» эксперимента, глиняного колосса, на которого достаточно дунуть, чтобы не оставить камне на камне.
У него есть свои поклонники, жадно верующие в то, что в один прекрасный день какой-нибудь ученый создаст установку, которая спасет мир не столько от расходов на энергию, сколько от радиационного воздействия. Есть и противники, горячо настаивающие на том, что это лженаука. Между тем еще во второй половине прошлого века умнейший советский человек Филимоненко Иван Степанович чуть не создал подобный реактор.
Экспериментальные установки 1957 год был ознаменован тем, что Филимоненко Иван Степанович вывел совершенно другой вариант создания энергии при помощи ядерного синтеза из дейтерия гелия. А уже в июле шестьдесят второго года он запатентовал свою работу по процессам и системам термоэмиссии. Основной принцип работы: вид теплого ядерного синтеза, где температурный режим составляет 1000 градусов. Для внедрения этого патента в жизнь было выделено восемьдесят организаций и предприятий. Когда Курчатов умер, разработку стали прижимать, а после смерти Королева совсем прекратили разрабатывать термоядерный синтез холодный. В 1968-ом все работы Филимоненко остановили, так как он проводил с 1958 года исследования по определению радиационной опасности на АЭС и ТЭС, а также испытания ядерного оружия. Его доклад на сорок шесть страниц помог остановить программу, которая предлагалась для запуска на Юпитер и Луну ракеты с ядерной установкой.
Ведь при любой аварии или по возвращении космического корабля мог произойти взрыв. Он бы имел мощность в шестьсот раз больше, чем в Хиросиме. Но многим это решение не понравилось, и на Филимоненко организовали травлю, а через некоторое время его сняли с работы. Так как он не прекращал своих исследований, его обвинили в подрывной деятельности. Иван Степанович получил шесть лет заключения в тюрьме. Холодный термоядерный синтез и алхимия Спустя много лет, в 1989 году Мартин Флейшман и Стэнли Понс, используя электроды, создали из дейтерия гелий, как и Филимоненко. Физики произвели впечатление на все научное сообщество и прессу, расписавшую в ярких красках жизнь, которая будет после внедрения установки, разрешающей производить термоядерный синтез холодный.
Конечно, их результаты физики всего мира стали проверять самостоятельно. В первых рядах для проверки теории стоял технологический институт Массачусетса. Его директор Рональд Паркер подверг критике термоядерный синтез. Газеты обличали физиков Понса и Флейшмана в шарлатанстве и мошенничестве, так как теорию не смогли проверить, потому что получался всегда разный результат. В отчетах говорилось о большом количестве выделяемого тепла. Но в итоге был сделан подлог, данные подкорректировали. И после этих событий физики отказались от поиска решения теории Филимоненко «Холодный термоядерный синтез».
Кавитационный ядерный синтез Но в 2002 году об этой теме вспомнили. Американские физики Рузи Талейархан и Ричард Лейхи рассказали о том, что добились сближения ядер, но применили при этом эффект кавитации. Это когда в жидкой полости образуются газообразные пузырьки. Они могут появляться из-за прохождения звуковых волн через жидкость. Когда пузырьки лопаются, то образуется большое количество энергии. Ученые сумели зарегистрировать нейтроны с высокой энергией, при этом образовывались гелий и тритий, который считается продуктом ядерного синтеза. После проверки данного эксперимента фальсификации не обнаружили, но и признавать его пока не собирались.
Зигелевские чтения Они проходят в Москве, а названы в честь астронома и уфолога Зигеля. Такие чтения проводятся два раза в год.
Но обо всем по порядку. Сперва — о том, что якобы получилось у Тадахико Мизуно. Никель, палладий, даровая энергия? Автор утверждает, что установил у себя дома трубообразный реактор с никелевой сеткой, покрытой палладием. При подключении к сетке тока должно было выделяться тепло. Это и произошло, вот только калориметр показал, что этого тепла якобы было выделено порядка 500 ватт при вдвое меньшей подаче энергии.
Более того, при подаче на «реактор» 50 ватт выделяемая в виде тепла энергия, по утверждению Мизуно, была эквивалентна 300 ватт. Основной предполагаемый механизм якобы наблюдавшегося процесса — превращение более легких изотопов водорода в тяжелые, с выделением тепловой энергии. В общепринятой физике слияние ядер атомов в нормальных условиях невозможно: кулоновское отталкивание не даст им сблизиться на достаточно малое расстояние. Чтобы преодолеть его, нужны температуры и давления, которые делают термоядерную энергетику непрактичной. В рамках концепции холодного термоядерного синтеза возможны условия, когда ядра атомов сливаются, несмотря на кулоновское отталкивание. Вообще-то сходные процесс известны и в «нормальной» физике. Если заменить в изотопах водорода электрон на мюон отрицательно заряженная частица, примерно в двести раз тяжелее электрона , то из-за большей массы мюона возможно сближение ядер атомов такого «модифицированного» водорода на расстояния, при которых они сливаются. Так из пары атомов дейтерия можно получить, например, тритий или гелий.
Что характерно, это происходит при низких температурах, а вовсе не при многих миллионах градусах, как в токамаках и иных термоядерных реакторах. Проблема в том, что энергия, которую в такой реакции можно получить за счет мюона, — не более 1,4 гигаэлектронвольта. А чтобы получить мюон на современных ускорителях, необходимо придать частице энергию от нескольких гигаэлектронвольт. Ситуация как с золотом, которое можно получить из других элементов с помощью ядерной физики: сам процесс возможен, но золото, полученное им, будет много дороже обычного.
Когда необходимый минимальный фундамент теории заложен, можно перейти и к герою статьи. До этого холодная война достигла своего пика: сверхдержавы бойкотировали Олимпиады, наращивали ядерный потенциал и на какие-либо переговоры идти не собирались.
Этот саммит двух стран на нейтральной территории примечателен и другим важным обстоятельством. Спустя год между американскими, советскими, европейскими и японскими учеными было достигнуто соглашение по проекту, началась проработка концептуального дизайна крупного термоядерного комплекса ITER. Проработка инженерных деталей затянулась, США то выходили, то возвращались в проект, к нему со временем присоединились Китай, Южная Корея и Индия. Участники разделяли обязанности по финансированию и непосредственным работам, а в 2010 году наконец стартовала подготовка котлована под фундамент будущего комплекса. Его решили строить на юге Франции возле города Экс-ан-Прованс. Так что же такое ITER?
Это огромный научный эксперимент и амбициозный энергетический проект по строительству самого большого токамака в мире. Сооружение должно доказать возможность коммерческого использования термоядерного реактора, а также решить возникающие физические и технологические проблемы на этом пути. Из чего состоит реактор ITER? Токамак — это тороидальная вакуумная камера с магнитными катушками и криостатом массой в 23 тыс. Как уже понятно из определения, у нас есть камера. Глубокая вакуумная камера.
В случае с ITER это будет 850 кубометров свободного объема камеры, в котором на старте будет всего 0,1 грамма смеси дейтерия и трития. Вакуумная камера, где и обитает плазма. Инжектор нейтрального луча и радиочастотный нагрев плазмы до 150 млн градусов. Сверхпроводящие магниты, которые обуздают плазму. Бланкеты, защищающие камеру и магниты от бомбардировки нейтронами и нагрева. Дивертор, который отводит тепло и продукты термоядерной реакции.
Инструменты диагностики для изучения физики плазмы. Включают манометры и нейтронные камеры. Криостат — огромный термос с глубоким вакуумом, который защищает от нагрева магниты и вакуумную камеру А вот так выглядит «маленькая» вакуумная камера с моделями работников внутри. Она 11,4 метра в высоту, а вместе с бланкетами и дивертором будет весить 8,5 тыс. Внутри них циркулирует вода. Вырывающиеся из плазмы свободные нейтроны попадают в эти бланкеты и тормозятся водой.
Из-за чего она нагревается. Сами бланкеты защищают всю остальную махину от теплового, рентгеновского и уже упомянутого нейтронного излучения плазмы. Такая система необходима для того, чтобы продлить срок работы реактора. Каждый бланкет весит порядка 4,5 тонны, их будет менять роботизированная рука примерно раз в 5—10 лет, так как этот первый ряд обороны будет подвержен испарению и нейтронному излучению. Но это далеко не все. К камере присоединяется внутрикамерное оборудование, термопары, акселерометры, уже упомянутые 440 блоков бланкетной системы, системы охлаждения, экранирующий блок, дивертор, магнитная система из 48 элементов, высокочастотные нагреватели плазмы, инжектор нейтральных атомов и т.