Ответ на вопрос в сканворде величина, характеризующая способность поверхности отражать падающий на нее поток электромагнитного излучения или частиц состоит из 7 букв. это его эффективность в отражении лучистой энергии. Отражательная дифракционная решетка, способная концентрировать дифракционное излучение в спектре одного порядка, ослабляя другие (7 букв).
Отраженный свет
Отражательная способность кварца, отражательная способность 7 букв кроссворд, отражательная способность сухой почвы, отражательная способность красный кирпич. Особые правила были установлены о авторских базарах и об воспоминании коротышек. способность поверхности небесного тела отражать падающий свет (см. способность 11 букв). 7 букв. Ответы для кроссворда. Во-первых, слово альбедо состояит из букв: первая А, вторая Л, третья Ь, четвертая Б, пятая Е, шестая Д, седьмая О. Р. Седьмая буква - К. Вопросы в кроссвордах к этому слову. Сияние отраженного света. Слово из 6 букв, ответ: Паства 10. Как называется величина, которая характеризует отражательную способность различных тел?
Величина, характеризующая отражательную способность.
Коэффициент отражения, с помощью которого измеряется отражательная способность какой-нибудь поверхности. Отражательная способность Отражательная способность 7 букв сканворд. Основное преимущество многослойного просветления применительно к фотографической и наблюдательной оптике — незначительная зависимость отражательной способности от длины волны в пределах видимого спектра, что существенно уменьшает искажения цвета. Отражательная способность поверхности Ответ: АЛЬБЕДО. Американский мультфильм __ на каникулах Ответ: МОНСТРЫ. Характеристика отражательной способности. Отражательная способность. Единица измерения отражательной способности поверхности. Величина, характеризующая отражательную способность.
Отражательная способность 7 букв сканворд. Отражательная способность
Ответ на кроссворды — Величина, характеризующая отражательную способность различных тел. 7 букв. Пользователь ольга трушкова задал вопрос в категории Программное обеспечение и получил на него 3 ответа. а, последняя - о): альбедо. Одним из ключевых понятий в этом контексте является величина, которая характеризует отражательную способность поверхностей. Согласно маске ТОННЕ** были найдены 2 слова из 7 букв в словаре "Слова из кроссвордов".
Сияние отраженного света, 7 букв
Спектральная отражательная способность свежей и выветрелой поверхности горных пород на примере риолита К , базальта и туфа. The multiband approach to geological mapping from orbiting satellites: is it redundant or vital? Lyon, Remote Sensing of Environment, Vol. А — риолит; В — гидротермально измененный базальт; ВТ — туф с аметистом; индекс W выветрелые пробы.
Рассмотрим теперь количественную зависимость спектральной яркости поверхностей разных типов горных пород от густоты покрывающей их растительности. Эти измерения проводились в поле спектрометром с шириной диапазона измерений от 0,45 до 2,4 мкм, т. В качестве объектов были выбраны поверхности андезита, базальта, риолита, лавы красно-оранжевой , кварца, трахиандезита латита , известняка, красного глинистого сланца, лимонитизированных и аргилитизированных щебня и почвы, окварцованного известняка и мраморизованного доломита с лимонитом.
Поверхности каждого типа пород были покрыты неоднородным по густоте покровом зеленых луговых трав, и семени сосны, а также кустиками толокнянки и увядшего шалфея. Влияние плотности растительного покрова на величину спектрального отражения андезита, известняка и глиноземистых лимонитизированных выветрелых почв показано на рис. На этих графиках сопоставляется яркость не покрытых растениями и заросших поверхностей горных пород густота растительности в поле измерения спектрометра выражена в процентах.
Как и ожидалось, эффект растительности в спектре отраженного потока энергии четко выражен только для горных пород с незначительным альбедо. Даже при незначительном растительном покрове была затруднена идентификация спектральных сигналов пород этих двух типов. Влияние растительности разных видов и разной плотности на спектральную яркость андезита, известняка и лимонитизированной глинистой почвы с обломками выветрелой горной породы почва на коре выветривания : а - луговые травы; б - заросли толокнянки; в - заросли засохшего шалфея.
Это очевидно из сравнения двух рассмотренных групп графиков ср. Конечно, с увеличением густоты растительности уменьшается альбедо известняка и лимонитизированной глиноземистой почвы. Сухая и увядающая растительность изменяет характер спектра пород и почв мало.
Она только уменьшает величину альбедо. Изучение спектральных характеристик природных объектов способствовало выбору двух наиболее оптимальных интервалов длин волн: 1,2-1,3 и 1,6-2,2 мкм, в которых возможен поиск медно-порфирового оруденения в неизмененных интрузивных, вулканогенных и осадочных породах по зонам вторичных минералов и пород, образующихся в результате гидротермальных изменений. В результате лабораторных измерений было установлено, что определенные минералы, которые встречаются в зонах гидротермально измененных пород близ месторождений, например, медно-порфировых руд, имеют специфические спектральные признаки, особенно в интервале длин волн 2,1-2,4 мкм.
Эти признаки можно использовать для дистанционного зондирования. Так, каолинит, монтмориллонит, алунит и кальцит распознаются по характерным узким и широким полосам поглощения энергии в среднем инфракрасном диапазоне рис. Исходя из предположения, что с помощью десятиканального радиометра с диапазоном измерений 0,5-2,3 мкм удастся отыскать для начала хотя бы каолин или карбонатные породы по их спектральным характеристикам, были проведены экспериментальные съемки с борта космического корабля многоразового использования «Спейс шаттл Колумбия».
Наряду с измерениями в специфических узких зонах спектра были предложены и измерения в определенной комбинации зон или каналов для доказательства возможности определения интересующих минералов. Проведенными на тестовом участке исследованиями была доказана эффективность предложенной комбинации двух каналов; 1,6 и 2,2 мкм. Первый из них очень важен для обнаружения гидроксильных групп в минералах, типичных для гидротермально измененных зон месторождений.
По данным проведенных измерений в обоих этих каналах оказалось возможным различать лимонитизированные, гидротермально измененные породы и магматические породы в большинстве случаев тоже с лимонитом, который образуется в результате окисления железо-магниевых минералов и раскристаллизации стекла. Кроме того, обнаружились сильно осветленные гидротермально измененные породы без лимонита, если они имели в своем составе минералы с гидроксильной группой ОН-. Спектральная отражательная способность некоторых минералов, встречающихся на участках развития гидротермальных изменений в горных породах по данным лабораторных измерений.
Для определения минералов важным оказалось положение спектральных полос поглощения, 1 — каолинит; 2 — монтмориллонит; 3 — алунит; 4 — кальцит. Использование среднего инфракрасного диапазона стало возможным только в последние годы благодаря разработке таких приемников, которые позволили проводить эти измерения. Тематические изображения-схемы получаются многозональным сканером спутника «Лэндсат-4», имеющим специальный канал 2,2 мкм, предназначенный для составления карт литофаций или минеральных фаций.
По результатам одного из экспериментов, проведенного для решения геологических задач дистанционными методами, был сделан вывод об эффективности спектрометрирования в следующих зонах спектра: 1,18-1,3; 4,0-4,75; 0,46-0,50; 1,52-1,73; 2,10-2,36 мкм. Этот вывод основан на результатах обработки данных с одного тестового участка в шт. Измерения проводились многозональным сканером во время облета территории участка с обнаженными выходами пород основных типов — осадочных и интрузивных, а также с зонами их вторичных гидротермальных изменений.
Размер поля измерения по поверхности изучаемой породы составлял около 0,24 км кв. Для всех типов пород измерения проводились по 15 каналам с интервалом между ними 0,34-0,75 мкм. С помощью дискриминантного анализа были выявлены зоны, в которых чаще всего проводилась съемка всех разностей пород с оптимальным контрастом специфических разностей пород по отношению к другим типам.
Запись выделенных зон предназначалась для повторного изучения и картирования литофациальных разностей. Использованный мультиспектральный сканер имел спектральное разрешение в видимом диапазоне 0,04-0,06 мкм, в ближнем ИК-диапазоне 0,05-0,26 мкм и в тепловом диапазоне 0,25-0,36 мкм. Только один из спектральных каналов этого сканера действовал в том же спектральном диапазоне, что и сканеры первых спутников «Лэндсат» — от 0,4 до 1,1 мкм, остальные четыре оптимальных канала работали в длинноволновой, инфракрасной, области излучения, значение которой подчеркивалось вышеприведенными примерами.
Исследованиями спектральных характеристик неизмененных и измененных пород близ урановых месторождений установлен ряд спектральных зон: 1,25; 0,95; 2,20; 2,15; 1,75; 2,45; 2,10; 1,60; 1,55 и 0,75 мкм, измерения в которых, проведенные в указанной последовательности, наиболее эффективны для разделения литофаций в районах урановых месторождений. Этот пример подчеркивает значение спектральных съемок в строго ограниченных узких зонах спектра, в которых более или менее эффективно можно использовать методы дистанционного зондирования при поисково-разведочных работах. Спектральная характеристическая яркость горных пород сильно зависит от величины окна или щели спектрометра или радиометра, т.
Пространственное разрешение - величина, характеризующая размер наименьших объектов, различимых на изображении найти примеры снимков горных пород. Важным является выполнение ДМИ в разных частях спектра, где различные свойства горных пород обладают контрастными спектральными характеристиками. Вторичное тепловое излучение горных пород эмиссия Наряду с характеристиками спектрального отражения поверхностей горных пород и почв в видимом и ближнем ИК-диапазонах в 1960-е годы часть геологов интересовалась и вторичным тепловым излучением горных пород, которое надеялись использовать при дистанционном зондировании.
В результате исследований, проводившихся с конца 50-х годов, было установлено, что форма кривых на графиках вторичного теплового излучения горных пород тесно связана с минеральным составом пород, что силикатные и несиликатные породы можно различать по спектрам их вторичного теплового излучения в диапазоне 8-13 мкм и что, наконец, можно разделить по этим же спектрам силикатные породы разного минерального состава. Признаком для распознавания во всех случаях служило положение минимумов на графиках вторичного теплового излучения горных пород. Рассмотрим группу графиков энергии вторичного теплового излучения, полученных при измерениях некоторых грубозернистых свежих измельченных проб гранитов из Новой Англии.
Цвет отдельных проб меняется от темно-серого до коричневого, розового или голубоватого. Но различие в цвете, по мнению Лайона и Грина, не влияет на интенсивность эмиттерного излучения. Измерение положения минимума энергии на графиках рис.
Для сравнения приведены оба минимума в спектре излучения кварца Q.
Влияние плотности растительного покрова на величину спектрального отражения андезита, известняка и глиноземистых лимонитизированных выветрелых почв показано на рис. На этих графиках сопоставляется яркость не покрытых растениями и заросших поверхностей горных пород густота растительности в поле измерения спектрометра выражена в процентах. Как и ожидалось, эффект растительности в спектре отраженного потока энергии четко выражен только для горных пород с незначительным альбедо. Даже при незначительном растительном покрове была затруднена идентификация спектральных сигналов пород этих двух типов. Влияние растительности разных видов и разной плотности на спектральную яркость андезита, известняка и лимонитизированной глинистой почвы с обломками выветрелой горной породы почва на коре выветривания : а - луговые травы; б - заросли толокнянки; в - заросли засохшего шалфея. Это очевидно из сравнения двух рассмотренных групп графиков ср.
Конечно, с увеличением густоты растительности уменьшается альбедо известняка и лимонитизированной глиноземистой почвы. Сухая и увядающая растительность изменяет характер спектра пород и почв мало. Она только уменьшает величину альбедо. Изучение спектральных характеристик природных объектов способствовало выбору двух наиболее оптимальных интервалов длин волн: 1,2-1,3 и 1,6-2,2 мкм, в которых возможен поиск медно-порфирового оруденения в неизмененных интрузивных, вулканогенных и осадочных породах по зонам вторичных минералов и пород, образующихся в результате гидротермальных изменений. В результате лабораторных измерений было установлено, что определенные минералы, которые встречаются в зонах гидротермально измененных пород близ месторождений, например, медно-порфировых руд, имеют специфические спектральные признаки, особенно в интервале длин волн 2,1-2,4 мкм. Эти признаки можно использовать для дистанционного зондирования. Так, каолинит, монтмориллонит, алунит и кальцит распознаются по характерным узким и широким полосам поглощения энергии в среднем инфракрасном диапазоне рис.
Исходя из предположения, что с помощью десятиканального радиометра с диапазоном измерений 0,5-2,3 мкм удастся отыскать для начала хотя бы каолин или карбонатные породы по их спектральным характеристикам, были проведены экспериментальные съемки с борта космического корабля многоразового использования «Спейс шаттл Колумбия». Наряду с измерениями в специфических узких зонах спектра были предложены и измерения в определенной комбинации зон или каналов для доказательства возможности определения интересующих минералов. Проведенными на тестовом участке исследованиями была доказана эффективность предложенной комбинации двух каналов; 1,6 и 2,2 мкм. Первый из них очень важен для обнаружения гидроксильных групп в минералах, типичных для гидротермально измененных зон месторождений. По данным проведенных измерений в обоих этих каналах оказалось возможным различать лимонитизированные, гидротермально измененные породы и магматические породы в большинстве случаев тоже с лимонитом, который образуется в результате окисления железо-магниевых минералов и раскристаллизации стекла. Кроме того, обнаружились сильно осветленные гидротермально измененные породы без лимонита, если они имели в своем составе минералы с гидроксильной группой ОН-. Спектральная отражательная способность некоторых минералов, встречающихся на участках развития гидротермальных изменений в горных породах по данным лабораторных измерений.
Для определения минералов важным оказалось положение спектральных полос поглощения, 1 — каолинит; 2 — монтмориллонит; 3 — алунит; 4 — кальцит. Использование среднего инфракрасного диапазона стало возможным только в последние годы благодаря разработке таких приемников, которые позволили проводить эти измерения. Тематические изображения-схемы получаются многозональным сканером спутника «Лэндсат-4», имеющим специальный канал 2,2 мкм, предназначенный для составления карт литофаций или минеральных фаций. По результатам одного из экспериментов, проведенного для решения геологических задач дистанционными методами, был сделан вывод об эффективности спектрометрирования в следующих зонах спектра: 1,18-1,3; 4,0-4,75; 0,46-0,50; 1,52-1,73; 2,10-2,36 мкм. Этот вывод основан на результатах обработки данных с одного тестового участка в шт. Измерения проводились многозональным сканером во время облета территории участка с обнаженными выходами пород основных типов — осадочных и интрузивных, а также с зонами их вторичных гидротермальных изменений. Размер поля измерения по поверхности изучаемой породы составлял около 0,24 км кв.
Для всех типов пород измерения проводились по 15 каналам с интервалом между ними 0,34-0,75 мкм. С помощью дискриминантного анализа были выявлены зоны, в которых чаще всего проводилась съемка всех разностей пород с оптимальным контрастом специфических разностей пород по отношению к другим типам. Запись выделенных зон предназначалась для повторного изучения и картирования литофациальных разностей. Использованный мультиспектральный сканер имел спектральное разрешение в видимом диапазоне 0,04-0,06 мкм, в ближнем ИК-диапазоне 0,05-0,26 мкм и в тепловом диапазоне 0,25-0,36 мкм. Только один из спектральных каналов этого сканера действовал в том же спектральном диапазоне, что и сканеры первых спутников «Лэндсат» — от 0,4 до 1,1 мкм, остальные четыре оптимальных канала работали в длинноволновой, инфракрасной, области излучения, значение которой подчеркивалось вышеприведенными примерами. Исследованиями спектральных характеристик неизмененных и измененных пород близ урановых месторождений установлен ряд спектральных зон: 1,25; 0,95; 2,20; 2,15; 1,75; 2,45; 2,10; 1,60; 1,55 и 0,75 мкм, измерения в которых, проведенные в указанной последовательности, наиболее эффективны для разделения литофаций в районах урановых месторождений. Этот пример подчеркивает значение спектральных съемок в строго ограниченных узких зонах спектра, в которых более или менее эффективно можно использовать методы дистанционного зондирования при поисково-разведочных работах.
Спектральная характеристическая яркость горных пород сильно зависит от величины окна или щели спектрометра или радиометра, т. Пространственное разрешение - величина, характеризующая размер наименьших объектов, различимых на изображении найти примеры снимков горных пород. Важным является выполнение ДМИ в разных частях спектра, где различные свойства горных пород обладают контрастными спектральными характеристиками. Вторичное тепловое излучение горных пород эмиссия Наряду с характеристиками спектрального отражения поверхностей горных пород и почв в видимом и ближнем ИК-диапазонах в 1960-е годы часть геологов интересовалась и вторичным тепловым излучением горных пород, которое надеялись использовать при дистанционном зондировании. В результате исследований, проводившихся с конца 50-х годов, было установлено, что форма кривых на графиках вторичного теплового излучения горных пород тесно связана с минеральным составом пород, что силикатные и несиликатные породы можно различать по спектрам их вторичного теплового излучения в диапазоне 8-13 мкм и что, наконец, можно разделить по этим же спектрам силикатные породы разного минерального состава. Признаком для распознавания во всех случаях служило положение минимумов на графиках вторичного теплового излучения горных пород. Рассмотрим группу графиков энергии вторичного теплового излучения, полученных при измерениях некоторых грубозернистых свежих измельченных проб гранитов из Новой Англии.
Цвет отдельных проб меняется от темно-серого до коричневого, розового или голубоватого. Но различие в цвете, по мнению Лайона и Грина, не влияет на интенсивность эмиттерного излучения. Измерение положения минимума энергии на графиках рис. Для сравнения приведены оба минимума в спектре излучения кварца Q. Спектральные излучательные способности свежей поверхности грубозернистых гранитов из Новой Англии. Q — эмиссионный минимум кварца, для сравнения. Вертикальные стрелки показывают, где эмиссия равна 1.
В принципе на спектральную характеристику поверхности горной породы или почвы влияют многочисленные факторы, как зависящие от свойств поверхности объекта измерения, так и не зависящие от них, а связанные с его окружением и атмосферой. Однако для регионов, в которых обширные участки территории лишены растительного покрова, например в аридных областях, в высокогорных районах и т. Здесь можно использовать минимумы на графиках вторичного теплового излучения объектов, закономерно связанные с их минеральным составом, для интерпретации определенных литофациальных разностей пород или их комплексов. Это предположение было доказано при сканерных самолетных тепловых съемках: участки обнаженных горных пород разного состава наиболее контрастно были переданы оттенками серого тона в двух диапазонах: 8-9 и 9-11 мкм. Наименьшие значения величин этого отношения имеют горные породы или почвы, в состав которых входят кварц или плагиоклазы.
Температуры поверхностей различных материалов в течение суток Lowe, 1969. Количественная обработка данных многозональных съемок, в том числе и тепловыми сканерами и радиометрами, приобретает с каждым днем все большее значение. Уже сейчас дистанционное зондирование основывается на температурных особенностях почв, растительных сообществ или горных пород при решении оперативных задач мониторинга среды. Различные тепловые свойства горных пород табл. Здесь важно подчеркнуть, что даже информация об относительном различии в радиационных температурах поверхности объектов может оказаться решающей при геологическом дешифрировании снимков, так как возможны дополнительные критерии оценки, которые нельзя получить съемками в видимом диапазоне электромагнитных волн. Таблица 1а. Отражательная способность - величина, описывающая способность какой-либо поверхности или границы раздела двух сред отражать падающий на неё поток электромагнитного излучения. Широко используется в оптике, количественно характеризуется коэффициентом отражения. Для характеризации диффузного отражения используется величина, называемая альбедо. Способность материалов отражать излучение зависит от угла падения, от поляризации падающего излучения, а также его спектра. Зависимость отражательной способности поверхности тела от длины волны света в области видимого света глаз человека воспринимает как цвет тела. Зависимость отражательной способности материалов от длины волны имеет важное значение при построении оптических систем. Для получения нужных свойств материалов по отражению и пропусканию света иногда используют просветление оптики как, например, при производстве диэлектрических зеркал или интерференционных фильтров. ВБР обладают узким спектром отражения, используются в волоконных лазерах, волоконно-оптических датчиках, для стабилизации и изменения длины волны лазеров и лазерных диодов и т. Фотометрия др. Один из основных экспериментальных методов изучения оптических свойств материалов, и в особенности полупроводниковых микро- и наноструктур. Он позволяет прикладывать к диэлектрическим объектам силы от фемтоньютонов до наноньютонов и измерять расстояния от нескольких нанометров до микронов. В последние годы оптические пинцеты начали использовать в биофизике для изучения структуры и принципа работы... Давление электромагнитного излучения , давление света - давление, которое оказывает световое и вообще электромагнитное излучение, падающее на поверхность тела. Это позволяет увеличить светопропускание оптической системы и повысить контрастность изображения за счёт подавления бликов. Это явление обычно характеризуется чередующимися в пространстве максимумами и минимумами интенсивности света. Конкретный вид такого распределения интенсивности света в пространстве или на экране, куда падает свет, называется интерференционной картиной. Эффект Керра , или квадратичный электрооптический эффект, - явление изменения значения показателя преломления оптического материала пропорционально квадрату напряжённости приложенного электрического поля. Отличается от эффекта Поккельса тем, что изменение показателя прямо пропорционально квадрату электрического поля, в то время как последний изменяется линейно. Эффект Керра может наблюдаться во всех веществах, однако некоторые жидкости проявляют его сильнее других веществ. Открыт в 1875 году шотландским... Спектроскопия в ближней инфракрасной области БИК-спектроскопия, англ. Область ближнего инфракрасного излучения располагается между видимым светом и средней инфракрасной областью. Используются в разнообразных оптических приборах. При надлежащем выборе материалов и толщин слоёв можно создать оптические покрытия с требуемым отражением на выбранной длине волны. Диэлектрические зеркала могут обеспечивать очень большие коэффициенты отражения, так называемые суперзеркала , которые обеспечивают отражение... Поляриметр полярископ, - только для наблюдения - прибор, предназначенный для измерения угла вращения плоскости поляризации, вызванной оптической активностью прозрачных сред, растворов сахарометрия и жидкостей. В широком смысле поляриметр - это прибор, измеряющий параметры поляризации частично поляризованного излучения в этом смысле могут измеряться параметры вектора Стокса, степень поляризации, параметры эллипса поляризации частично поляризованного излучения и т. Эквивалентная формулировка: рассеяние света на объектах, размеры которых меньше его длины волны. Названо в честь британского физика лорда Рэлея, установившего зависимость интенсивности рассеянного света от длины волны в 1871 году... Абсолютно чёрное тело - физическое тело, которое при любой температуре поглощает всё падающее на него электромагнитное излучение во всех диапазонах. Потемнение диска к краю - оптический эффект при наблюдении звёзд, включая Солнце, при котором центральная часть диска звезды кажется ярче, чем край или лимб диска. Понимание данного эффекта позволило создать модели звездных атмосфер с учетом подобного градиента яркости, что способствовало развитию теории переноса излучения. Интерферометр Майкельсона - двухлучевой интерферометр, изобретённый Альбертом Майкельсоном. Данный прибор позволил впервые измерить длину волны света. В опыте Майкельсона интерферометр был использован Майкельсоном и Морли для проверки гипотезы о светоносном эфире в 1887 году. Малоугловое рентгеновское рассеяние сокр. Рентгеновская оптика - отрасль прикладной оптики, изучающая процессы распространения рентгеновских лучей в средах, а также разрабатывающая элементы для рентгеновских приборов. Эта величина соответствует параметру качества пучка BPP в физике Гауссовых пучков. Рентгеновское зеркало - оптическое устройство, служащее для управления рентгеновским излучением отражения рентгеновских лучей, фокусирования и рассеивания. В настоящее время технологии позволяют создавать зеркала для рентгеновских лучей и части экстремального УФ с длиной волны от 2 до 45-55 нанометров. Рентгеновское зеркало состоит из многих слоев специальных материалов до нескольких сотен слоев. Дифракционная решётка - оптический прибор, действие которого основано на использовании явления дифракции света. Представляет собой совокупность большого числа регулярно расположенных штрихов щелей, выступов , нанесённых на некоторую поверхность. Первое описание явления сделал Джеймс Грегори, который использовал в качестве решётки птичьи перья. Эффект Садовского - появление механического вращающего момента, который действует на тело, облучаемое поляризованным эллиптически или по кругу светом. Любой объект, излучающий электромагнитную энергию в видимой области спектра. По своей природе подразделяются на искусственные и естественные.
Определяется характеристика соотношением между интенсивностью света, направленного на образец и отраженного от него, выраженного в процентах. Образец каменного угля Образец каменного угля Испытания проводятся в воздушной и масляной среде. Специальный прибор фиксирует интенсивность отраженного света. Максимальный показатель по этому свойству имеет группа инертинитов а именно — фюзинит , минимальный — микрокомпоненты из группы липтинитов. Все они по-разному отражают свет, поэтому свойство помогает достаточно точно определить петрографический состав полезного ископаемого. Витриниты, инертиниты и липтиниты — это группы микрокомпонентов угля.
Величина, характеризующая отражательную способность.
Характеристика отражательной способности 7 букв. Отражательная способность | Отражательная способность 7 букв. Кривая спектральной отражательной способности. Спектральная отражательная способность природных объектов. |
Отражательная способность, 7 букв, первая буква А — кроссворды и сканворды | Отражательная способность кварца, отражательная способность 7 букв кроссворд, отражательная способность сухой почвы, отражательная способность красный кирпич. Особые правила были установлены о авторских базарах и об воспоминании коротышек. |
Отражательная способность | Ответ на вопрос кроссворда или сканворда: Отражательная способность, 7 букв, первая буква А. Найдено альтернативных вопросов для кроссворда — 11 вариантов. |
отражательная способность 7 букв
Эта игра представляет собой увлекательную и захватывающую словесную головоломку, которая предлагает игрокам исследовать различные тематические миры. Благодаря увлекательной сюжетной линии игроки отправляются в межгалактическое приключение, чтобы помочь очаровательному инопланетному персонажу по имени Коди найти дорогу домой. В игре есть сетка, заполненная буквами, и игроки должны использовать свои знания и словарный запас, чтобы составлять слова, которые вписываются в сетку.
На этих графиках сопоставляется яркость не покрытых растениями и заросших поверхностей горных пород густота растительности в поле измерения спектрометра выражена в процентах. Как и ожидалось, эффект растительности в спектре отраженного потока энергии четко выражен только для горных пород с незначительным альбедо. Даже при незначительном растительном покрове была затруднена идентификация спектральных сигналов пород этих двух типов. Влияние растительности разных видов и разной плотности на спектральную яркость андезита, известняка и лимонитизированной глинистой почвы с обломками выветрелой горной породы почва на коре выветривания : а - луговые травы; б - заросли толокнянки; в - заросли засохшего шалфея.
Это очевидно из сравнения двух рассмотренных групп графиков ср. Конечно, с увеличением густоты растительности уменьшается альбедо известняка и лимонитизированной глиноземистой почвы. Сухая и увядающая растительность изменяет характер спектра пород и почв мало. Она только уменьшает величину альбедо. Изучение спектральных характеристик природных объектов способствовало выбору двух наиболее оптимальных интервалов длин волн: 1,2-1,3 и 1,6-2,2 мкм, в которых возможен поиск медно-порфирового оруденения в неизмененных интрузивных, вулканогенных и осадочных породах по зонам вторичных минералов и пород, образующихся в результате гидротермальных изменений. В результате лабораторных измерений было установлено, что определенные минералы, которые встречаются в зонах гидротермально измененных пород близ месторождений, например, медно-порфировых руд, имеют специфические спектральные признаки, особенно в интервале длин волн 2,1-2,4 мкм.
Эти признаки можно использовать для дистанционного зондирования. Так, каолинит, монтмориллонит, алунит и кальцит распознаются по характерным узким и широким полосам поглощения энергии в среднем инфракрасном диапазоне рис. Исходя из предположения, что с помощью десятиканального радиометра с диапазоном измерений 0,5-2,3 мкм удастся отыскать для начала хотя бы каолин или карбонатные породы по их спектральным характеристикам, были проведены экспериментальные съемки с борта космического корабля многоразового использования «Спейс шаттл Колумбия». Наряду с измерениями в специфических узких зонах спектра были предложены и измерения в определенной комбинации зон или каналов для доказательства возможности определения интересующих минералов. Проведенными на тестовом участке исследованиями была доказана эффективность предложенной комбинации двух каналов; 1,6 и 2,2 мкм. Первый из них очень важен для обнаружения гидроксильных групп в минералах, типичных для гидротермально измененных зон месторождений.
По данным проведенных измерений в обоих этих каналах оказалось возможным различать лимонитизированные, гидротермально измененные породы и магматические породы в большинстве случаев тоже с лимонитом, который образуется в результате окисления железо-магниевых минералов и раскристаллизации стекла. Кроме того, обнаружились сильно осветленные гидротермально измененные породы без лимонита, если они имели в своем составе минералы с гидроксильной группой ОН-. Спектральная отражательная способность некоторых минералов, встречающихся на участках развития гидротермальных изменений в горных породах по данным лабораторных измерений. Для определения минералов важным оказалось положение спектральных полос поглощения, 1 — каолинит; 2 — монтмориллонит; 3 — алунит; 4 — кальцит. Использование среднего инфракрасного диапазона стало возможным только в последние годы благодаря разработке таких приемников, которые позволили проводить эти измерения. Тематические изображения-схемы получаются многозональным сканером спутника «Лэндсат-4», имеющим специальный канал 2,2 мкм, предназначенный для составления карт литофаций или минеральных фаций.
По результатам одного из экспериментов, проведенного для решения геологических задач дистанционными методами, был сделан вывод об эффективности спектрометрирования в следующих зонах спектра: 1,18-1,3; 4,0-4,75; 0,46-0,50; 1,52-1,73; 2,10-2,36 мкм. Этот вывод основан на результатах обработки данных с одного тестового участка в шт. Измерения проводились многозональным сканером во время облета территории участка с обнаженными выходами пород основных типов — осадочных и интрузивных, а также с зонами их вторичных гидротермальных изменений. Размер поля измерения по поверхности изучаемой породы составлял около 0,24 км кв. Для всех типов пород измерения проводились по 15 каналам с интервалом между ними 0,34-0,75 мкм. С помощью дискриминантного анализа были выявлены зоны, в которых чаще всего проводилась съемка всех разностей пород с оптимальным контрастом специфических разностей пород по отношению к другим типам.
Запись выделенных зон предназначалась для повторного изучения и картирования литофациальных разностей. Использованный мультиспектральный сканер имел спектральное разрешение в видимом диапазоне 0,04-0,06 мкм, в ближнем ИК-диапазоне 0,05-0,26 мкм и в тепловом диапазоне 0,25-0,36 мкм. Только один из спектральных каналов этого сканера действовал в том же спектральном диапазоне, что и сканеры первых спутников «Лэндсат» — от 0,4 до 1,1 мкм, остальные четыре оптимальных канала работали в длинноволновой, инфракрасной, области излучения, значение которой подчеркивалось вышеприведенными примерами. Исследованиями спектральных характеристик неизмененных и измененных пород близ урановых месторождений установлен ряд спектральных зон: 1,25; 0,95; 2,20; 2,15; 1,75; 2,45; 2,10; 1,60; 1,55 и 0,75 мкм, измерения в которых, проведенные в указанной последовательности, наиболее эффективны для разделения литофаций в районах урановых месторождений. Этот пример подчеркивает значение спектральных съемок в строго ограниченных узких зонах спектра, в которых более или менее эффективно можно использовать методы дистанционного зондирования при поисково-разведочных работах. Спектральная характеристическая яркость горных пород сильно зависит от величины окна или щели спектрометра или радиометра, т.
Пространственное разрешение - величина, характеризующая размер наименьших объектов, различимых на изображении найти примеры снимков горных пород. Важным является выполнение ДМИ в разных частях спектра, где различные свойства горных пород обладают контрастными спектральными характеристиками. Вторичное тепловое излучение горных пород эмиссия Наряду с характеристиками спектрального отражения поверхностей горных пород и почв в видимом и ближнем ИК-диапазонах в 1960-е годы часть геологов интересовалась и вторичным тепловым излучением горных пород, которое надеялись использовать при дистанционном зондировании. В результате исследований, проводившихся с конца 50-х годов, было установлено, что форма кривых на графиках вторичного теплового излучения горных пород тесно связана с минеральным составом пород, что силикатные и несиликатные породы можно различать по спектрам их вторичного теплового излучения в диапазоне 8-13 мкм и что, наконец, можно разделить по этим же спектрам силикатные породы разного минерального состава. Признаком для распознавания во всех случаях служило положение минимумов на графиках вторичного теплового излучения горных пород. Рассмотрим группу графиков энергии вторичного теплового излучения, полученных при измерениях некоторых грубозернистых свежих измельченных проб гранитов из Новой Англии.
Цвет отдельных проб меняется от темно-серого до коричневого, розового или голубоватого. Но различие в цвете, по мнению Лайона и Грина, не влияет на интенсивность эмиттерного излучения. Измерение положения минимума энергии на графиках рис. Для сравнения приведены оба минимума в спектре излучения кварца Q. Спектральные излучательные способности свежей поверхности грубозернистых гранитов из Новой Англии. Q — эмиссионный минимум кварца, для сравнения.
Вертикальные стрелки показывают, где эмиссия равна 1. В принципе на спектральную характеристику поверхности горной породы или почвы влияют многочисленные факторы, как зависящие от свойств поверхности объекта измерения, так и не зависящие от них, а связанные с его окружением и атмосферой. Однако для регионов, в которых обширные участки территории лишены растительного покрова, например в аридных областях, в высокогорных районах и т. Здесь можно использовать минимумы на графиках вторичного теплового излучения объектов, закономерно связанные с их минеральным составом, для интерпретации определенных литофациальных разностей пород или их комплексов. Это предположение было доказано при сканерных самолетных тепловых съемках: участки обнаженных горных пород разного состава наиболее контрастно были переданы оттенками серого тона в двух диапазонах: 8-9 и 9-11 мкм. Наименьшие значения величин этого отношения имеют горные породы или почвы, в состав которых входят кварц или плагиоклазы.
В большинстве случаев в видимой части спектра свежие, невыветрелые поверхности гранитов отражают излучение сильнее, чем поверхности тех же пород, но выветрелые или покрытые лишайниками. Выветрелые шероховатые поверхности хуже отражают во всех интервалах длин волн. В видимом диапазоне электромагнитных волн поверхности выветрелых известняков отражают большую часть падающего излучения всегда сильнее, чем поверхности выветрелых доломитов рис. Кварцевый песчаник на свежем изломе благодаря своей чистой и однородной поверхности отражает падающий поток значительно сильнее, чем другие типы пород рис. Уотсон подчеркивает, что сравнение значений отражения, измеренных в лаборатории и на местности, может быть только приближенным. Прежде всего напомним, что спектрометром в лаборатории и на местности измеряются разные по величине площади. Уже поэтому возможны сильные различия в измеренных величинах отражения.
К тому же угол освещения в лаборатории постоянный или регулируемый, а в естественных условиях , на природе, угол падения солнечных лучей меняется в зависимости от времени дня и года, что приводит к переменному освещению объекта. Различные значения естественной освещенности изменяют интенсивность спектрального отражения одних и тех же поверхностей в течение дня и в разное время года. Поэтому значения спектральных яркостей, полученные в разное время наземными измерениями или в результате облетов тестовых участков, не сопоставимы или сопоставимы условно друг с другом. Еще одно сравнение отражательной способности выветрелых и свежих поверхностей горных пород: риолита, базальта и туфа рис. Как видно из графика, форма характеристических кривых почти не меняется, что можно объяснить устойчивостью спектральных признаков определенных типов пород. Спектральная отражательная способность свежей и выветрелой поверхности горных пород на примере риолита К , базальта и туфа. The multiband approach to geological mapping from orbiting satellites: is it redundant or vital?
Lyon, Remote Sensing of Environment, Vol. А — риолит; В — гидротермально измененный базальт; ВТ — туф с аметистом; индекс W выветрелые пробы. Рассмотрим теперь количественную зависимость спектральной яркости поверхностей разных типов горных пород от густоты покрывающей их растительности. Эти измерения проводились в поле спектрометром с шириной диапазона измерений от 0,45 до 2,4 мкм, т. В качестве объектов были выбраны поверхности андезита, базальта, риолита, лавы красно-оранжевой , кварца, трахиандезита латита , известняка, красного глинистого сланца, лимонитизированных и аргилитизированных щебня и почвы, окварцованного известняка и мраморизованного доломита с лимонитом. Поверхности каждого типа пород были покрыты неоднородным по густоте покровом зеленых луговых трав, и семени сосны, а также кустиками толокнянки и увядшего шалфея. Влияние плотности растительного покрова на величину спектрального отражения андезита, известняка и глиноземистых лимонитизированных выветрелых почв показано на рис.
На этих графиках сопоставляется яркость не покрытых растениями и заросших поверхностей горных пород густота растительности в поле измерения спектрометра выражена в процентах. Как и ожидалось, эффект растительности в спектре отраженного потока энергии четко выражен только для горных пород с незначительным альбедо. Даже при незначительном растительном покрове была затруднена идентификация спектральных сигналов пород этих двух типов. Влияние растительности разных видов и разной плотности на спектральную яркость андезита, известняка и лимонитизированной глинистой почвы с обломками выветрелой горной породы почва на коре выветривания : а - луговые травы; б - заросли толокнянки; в - заросли засохшего шалфея. Это очевидно из сравнения двух рассмотренных групп графиков ср. Конечно, с увеличением густоты растительности уменьшается альбедо известняка и лимонитизированной глиноземистой почвы. Сухая и увядающая растительность изменяет характер спектра пород и почв мало.
Она только уменьшает величину альбедо. Изучение спектральных характеристик природных объектов способствовало выбору двух наиболее оптимальных интервалов длин волн: 1,2-1,3 и 1,6-2,2 мкм, в которых возможен поиск медно-порфирового оруденения в неизмененных интрузивных, вулканогенных и осадочных породах по зонам вторичных минералов и пород, образующихся в результате гидротермальных изменений. В результате лабораторных измерений было установлено, что определенные минералы, которые встречаются в зонах гидротермально измененных пород близ месторождений, например, медно-порфировых руд, имеют специфические спектральные признаки, особенно в интервале длин волн 2,1-2,4 мкм. Эти признаки можно использовать для дистанционного зондирования. Так, каолинит, монтмориллонит, алунит и кальцит распознаются по характерным узким и широким полосам поглощения энергии в среднем инфракрасном диапазоне рис. Исходя из предположения, что с помощью десятиканального радиометра с диапазоном измерений 0,5-2,3 мкм удастся отыскать для начала хотя бы каолин или карбонатные породы по их спектральным характеристикам, были проведены экспериментальные съемки с борта космического корабля многоразового использования «Спейс шаттл Колумбия». Наряду с измерениями в специфических узких зонах спектра были предложены и измерения в определенной комбинации зон или каналов для доказательства возможности определения интересующих минералов.
Проведенными на тестовом участке исследованиями была доказана эффективность предложенной комбинации двух каналов; 1,6 и 2,2 мкм. Первый из них очень важен для обнаружения гидроксильных групп в минералах, типичных для гидротермально измененных зон месторождений. По данным проведенных измерений в обоих этих каналах оказалось возможным различать лимонитизированные, гидротермально измененные породы и магматические породы в большинстве случаев тоже с лимонитом, который образуется в результате окисления железо-магниевых минералов и раскристаллизации стекла. Кроме того, обнаружились сильно осветленные гидротермально измененные породы без лимонита, если они имели в своем составе минералы с гидроксильной группой ОН-. Спектральная отражательная способность некоторых минералов, встречающихся на участках развития гидротермальных изменений в горных породах по данным лабораторных измерений. Для определения минералов важным оказалось положение спектральных полос поглощения, 1 — каолинит; 2 — монтмориллонит; 3 — алунит; 4 — кальцит. Использование среднего инфракрасного диапазона стало возможным только в последние годы благодаря разработке таких приемников, которые позволили проводить эти измерения.
Тематические изображения-схемы получаются многозональным сканером спутника «Лэндсат-4», имеющим специальный канал 2,2 мкм, предназначенный для составления карт литофаций или минеральных фаций. По результатам одного из экспериментов, проведенного для решения геологических задач дистанционными методами, был сделан вывод об эффективности спектрометрирования в следующих зонах спектра: 1,18-1,3; 4,0-4,75; 0,46-0,50; 1,52-1,73; 2,10-2,36 мкм. Этот вывод основан на результатах обработки данных с одного тестового участка в шт. Измерения проводились многозональным сканером во время облета территории участка с обнаженными выходами пород основных типов — осадочных и интрузивных, а также с зонами их вторичных гидротермальных изменений. Размер поля измерения по поверхности изучаемой породы составлял около 0,24 км кв. Для всех типов пород измерения проводились по 15 каналам с интервалом между ними 0,34-0,75 мкм. С помощью дискриминантного анализа были выявлены зоны, в которых чаще всего проводилась съемка всех разностей пород с оптимальным контрастом специфических разностей пород по отношению к другим типам.
Запись выделенных зон предназначалась для повторного изучения и картирования литофациальных разностей. Использованный мультиспектральный сканер имел спектральное разрешение в видимом диапазоне 0,04-0,06 мкм, в ближнем ИК-диапазоне 0,05-0,26 мкм и в тепловом диапазоне 0,25-0,36 мкм. Только один из спектральных каналов этого сканера действовал в том же спектральном диапазоне, что и сканеры первых спутников «Лэндсат» — от 0,4 до 1,1 мкм, остальные четыре оптимальных канала работали в длинноволновой, инфракрасной, области излучения, значение которой подчеркивалось вышеприведенными примерами. Исследованиями спектральных характеристик неизмененных и измененных пород близ урановых месторождений установлен ряд спектральных зон: 1,25; 0,95; 2,20; 2,15; 1,75; 2,45; 2,10; 1,60; 1,55 и 0,75 мкм, измерения в которых, проведенные в указанной последовательности, наиболее эффективны для разделения литофаций в районах урановых месторождений.
Мультиспектральный сканер, установленный на борту спутника «Лэндсат», охватывает минимальную площадь около 6000 м кв. Кроме того, поверхности проб, измеряемых в лаборатории, гомогенны. Естественные природные поверхности, которые попадают в поле измерений спектрометра, радиометра или сканера, установленного на борту самолета или спутника, почти всегда гетерогенны, неоднородны, из-за возможных различий в структуре поверхности, вариаций минерального состава и т. Доказано, что с изменением содержания железистых минералов может меняться спектральная яркость поверхности горной породы, так как изменяется почвообразование, вид и состав растительности на ней. Спектральные яркости поверхностей горных пород, которые были получены в разное время, в разных районах и с помощью разных измерительных и съемочных систем, зависящих от назначения съемок, едва ли следует прямо сравнивать и сопоставлять друг с другом. Несмотря на это, имеющиеся данные прежних спектральных измерений показывают, что относительные различия в отражательной, поглотительной и эмиссионной способностях важнейших типов горных пород могут быть использованы при ландшафтных исследованиях и составлении тематических карт. Результаты некоторых основополагающих исследований спектральных характеристик минералов и горных пород. Уотсон провел исследование четырех типов горных пород одной из долин шт. Оклахома в лабораторных и полевых условиях. Им были выбраны свежие размельченные пробы кварцевого песчаника и гранита, штуфы выветрелого известняка, гранита и доломита, а также покрытые коркой лишайников граниты. Каждый раз измерялись спектральные яркости нескольких проб разных типов пород. По данным проведенных измерений были построены графики рис. Спектральная отражательная способность свежей и выветрелой поверхности различных горных пород. Spectral reflectance and photometric properties of selected rocks, by R. Watson, Remote Sensing of Environment, Vol. В большинстве случаев в видимой части спектра свежие, невыветрелые поверхности гранитов отражают излучение сильнее, чем поверхности тех же пород, но выветрелые или покрытые лишайниками. Выветрелые шероховатые поверхности хуже отражают во всех интервалах длин волн. В видимом диапазоне электромагнитных волн поверхности выветрелых известняков отражают большую часть падающего излучения всегда сильнее, чем поверхности выветрелых доломитов рис. Кварцевый песчаник на свежем изломе благодаря своей чистой и однородной поверхности отражает падающий поток значительно сильнее, чем другие типы пород рис. Уотсон подчеркивает, что сравнение значений отражения, измеренных в лаборатории и на местности, может быть только приближенным. Прежде всего напомним, что спектрометром в лаборатории и на местности измеряются разные по величине площади. Уже поэтому возможны сильные различия в измеренных величинах отражения. К тому же угол освещения в лаборатории постоянный или регулируемый, а в естественных условиях, на природе, угол падения солнечных лучей меняется в зависимости от времени дня и года, что приводит к переменному освещению объекта. Различные значения естественной освещенности изменяют интенсивность спектрального отражения одних и тех же поверхностей в течение дня и в разное время года. Поэтому значения спектральных яркостей, полученные в разное время наземными измерениями или в результате облетов тестовых участков, не сопоставимы или сопоставимы условно друг с другом. Еще одно сравнение отражательной способности выветрелых и свежих поверхностей горных пород: риолита, базальта и туфа рис. Как видно из графика, форма характеристических кривых почти не меняется, что можно объяснить устойчивостью спектральных признаков определенных типов пород. Спектральная отражательная способность свежей и выветрелой поверхности горных пород на примере риолита К , базальта и туфа. The multiband approach to geological mapping from orbiting satellites: is it redundant or vital? Lyon, Remote Sensing of Environment, Vol. А — риолит; В — гидротермально измененный базальт; ВТ — туф с аметистом; индекс W выветрелые пробы. Рассмотрим теперь количественную зависимость спектральной яркости поверхностей разных типов горных пород от густоты покрывающей их растительности. Эти измерения проводились в поле спектрометром с шириной диапазона измерений от 0,45 до 2,4 мкм, т. В качестве объектов были выбраны поверхности андезита, базальта, риолита, лавы красно-оранжевой , кварца, трахиандезита латита , известняка, красного глинистого сланца, лимонитизированных и аргилитизированных щебня и почвы, окварцованного известняка и мраморизованного доломита с лимонитом. Поверхности каждого типа пород были покрыты неоднородным по густоте покровом зеленых луговых трав, и семени сосны, а также кустиками толокнянки и увядшего шалфея. Влияние плотности растительного покрова на величину спектрального отражения андезита, известняка и глиноземистых лимонитизированных выветрелых почв показано на рис. На этих графиках сопоставляется яркость не покрытых растениями и заросших поверхностей горных пород густота растительности в поле измерения спектрометра выражена в процентах. Как и ожидалось, эффект растительности в спектре отраженного потока энергии четко выражен только для горных пород с незначительным альбедо. Даже при незначительном растительном покрове была затруднена идентификация спектральных сигналов пород этих двух типов. Влияние растительности разных видов и разной плотности на спектральную яркость андезита, известняка и лимонитизированной глинистой почвы с обломками выветрелой горной породы почва на коре выветривания : а - луговые травы; б - заросли толокнянки; в - заросли засохшего шалфея. Это очевидно из сравнения двух рассмотренных групп графиков ср. Конечно, с увеличением густоты растительности уменьшается альбедо известняка и лимонитизированной глиноземистой почвы. Сухая и увядающая растительность изменяет характер спектра пород и почв мало. Она только уменьшает величину альбедо. Изучение спектральных характеристик природных объектов способствовало выбору двух наиболее оптимальных интервалов длин волн: 1,2-1,3 и 1,6-2,2 мкм, в которых возможен поиск медно-порфирового оруденения в неизмененных интрузивных, вулканогенных и осадочных породах по зонам вторичных минералов и пород, образующихся в результате гидротермальных изменений. В результате лабораторных измерений было установлено, что определенные минералы, которые встречаются в зонах гидротермально измененных пород близ месторождений, например, медно-порфировых руд, имеют специфические спектральные признаки, особенно в интервале длин волн 2,1-2,4 мкм. Эти признаки можно использовать для дистанционного зондирования. Так, каолинит, монтмориллонит, алунит и кальцит распознаются по характерным узким и широким полосам поглощения энергии в среднем инфракрасном диапазоне рис. Исходя из предположения, что с помощью десятиканального радиометра с диапазоном измерений 0,5-2,3 мкм удастся отыскать для начала хотя бы каолин или карбонатные породы по их спектральным характеристикам, были проведены экспериментальные съемки с борта космического корабля многоразового использования «Спейс шаттл Колумбия». Наряду с измерениями в специфических узких зонах спектра были предложены и измерения в определенной комбинации зон или каналов для доказательства возможности определения интересующих минералов. Проведенными на тестовом участке исследованиями была доказана эффективность предложенной комбинации двух каналов; 1,6 и 2,2 мкм. Первый из них очень важен для обнаружения гидроксильных групп в минералах, типичных для гидротермально измененных зон месторождений.
Ответ на вопрос: Отражательная способность
- ВЕЛИЧИНА, ХАРАКТЕРИЗУЮЩАЯ ОТРАЖАТЕЛЬНУЮ СПОСОБНОСТЬ - 7 Букв - Ответ на кроссворд & сканворд
- Отражательная способность 7 букв сканворд. Отражательная способность
- Характеристика отражательной способности 7 букв
- 2 слова из кроссвордов, которые совпадают с маской ТОННЕ**
- Отражательная способность поверхности
- Отражательная способность 7 букв. Отражательная способность
Отражательная способность поверхности 7 букв. Отражательная способность
Альбедо — это доля падающего света, отражающегося от поверхности. Он измеряется в процентах или десятичных долях и имеет значение от 0 до 1. Чем выше альбедо, тем больше света отражается от поверхности. Значение альбедо зависит от различных факторов, включая свойства материала поверхности, угол падения света и длину волны света. Некоторые поверхности, такие как зеркала, обладают высоким альбедо, что означает, что они практически полностью отражают свет. Другие поверхности, например, черная ткань, имеют низкое альбедо и поглощают большую часть света. Альбедо имеет множество практических применений.
Как пользоваться словарем Для поиска в словаре необходимо ввести слово в указанное поле поиска слова или ввести часть слова. Используйте пробелы для букв, которые вы не знаете. Оба поля можно использовать одновременно, если вы хотите уменьшить количество результатов и таким образом сузить слово решения.
Лошадиный аллюр Ответ из 5 букв. Из чего индийцы веревки вьют? Ответ из 4 букв. Что построил стихотворный Джек? Ответ из 3 букв. Спортивный триумф Ответ из 6 букв. Что куплеты с припевом связывает? Ответ из 5 букв.
Значение альбедо зависит от различных факторов, включая свойства материала поверхности, угол падения света и длину волны света. Некоторые поверхности, такие как зеркала, обладают высоким альбедо, что означает, что они практически полностью отражают свет. Другие поверхности, например, черная ткань, имеют низкое альбедо и поглощают большую часть света. Альбедо имеет множество практических применений. Например, в астрономии альбедо используется для оценки отражательных свойств планет и других небесных тел. Это позволяет ученым понять состав и структуру этих объектов. Также альбедо играет важную роль в климатических исследованиях.
Характеристика отражательной способности 7 букв. Отражательная способность
Мы были в восторге и продолжили весело проводить вечер, благодаря вашей помощи. Еще раз спасибо за это спасение в нашей кроссвордной истории!
БАРЫШ - разг. Материальная прибыль, получаемая при торговых сделках. Польза, выгода. Короткое производственное совещание по обсуждению плана работы.
Действие по знач. Контрольное упражнение перед соревнованием у спортсменов. Напряжение сил - физических, умственных, душевных - для достижения, осуществления чего-л. Амплуа актрисы, исполнявшей роли наивных, простодушных девушек. Актриса, играющая такие роли. СИЛОС - Сочный корм для скота, получаемый заквашиванием кормовых растений в специальных сооружениях башнях, траншеях, ямах и т.
Спектральная отражательная способность некоторых минералов, встречающихся на участках развития гидротермальных изменений в горных породах по данным лабораторных измерений. Для определения минералов важным оказалось положение спектральных полос поглощения, 1 — каолинит; 2 — монтмориллонит; 3 — алунит; 4 — кальцит. Использование среднего инфракрасного диапазона стало возможным только в последние годы благодаря разработке таких приемников, которые позволили проводить эти измерения. Тематические изображения-схемы получаются многозональным сканером спутника «Лэндсат-4», имеющим специальный канал 2,2 мкм, предназначенный для составления карт литофаций или минеральных фаций. По результатам одного из экспериментов, проведенного для решения геологических задач дистанционными методами, был сделан вывод об эффективности спектрометрирования в следующих зонах спектра: 1,18-1,3; 4,0-4,75; 0,46-0,50; 1,52-1,73; 2,10-2,36 мкм. Этот вывод основан на результатах обработки данных с одного тестового участка в шт. Измерения проводились многозональным сканером во время облета территории участка с обнаженными выходами пород основных типов — осадочных и интрузивных, а также с зонами их вторичных гидротермальных изменений. Размер поля измерения по поверхности изучаемой породы составлял около 0,24 км кв. Для всех типов пород измерения проводились по 15 каналам с интервалом между ними 0,34-0,75 мкм. С помощью дискриминантного анализа были выявлены зоны, в которых чаще всего проводилась съемка всех разностей пород с оптимальным контрастом специфических разностей пород по отношению к другим типам.
Запись выделенных зон предназначалась для повторного изучения и картирования литофациальных разностей. Использованный мультиспектральный сканер имел спектральное разрешение в видимом диапазоне 0,04-0,06 мкм, в ближнем ИК-диапазоне 0,05-0,26 мкм и в тепловом диапазоне 0,25-0,36 мкм. Только один из спектральных каналов этого сканера действовал в том же спектральном диапазоне, что и сканеры первых спутников «Лэндсат» — от 0,4 до 1,1 мкм, остальные четыре оптимальных канала работали в длинноволновой, инфракрасной, области излучения, значение которой подчеркивалось вышеприведенными примерами. Исследованиями спектральных характеристик неизмененных и измененных пород близ урановых месторождений установлен ряд спектральных зон: 1,25; 0,95; 2,20; 2,15; 1,75; 2,45; 2,10; 1,60; 1,55 и 0,75 мкм, измерения в которых, проведенные в указанной последовательности, наиболее эффективны для разделения литофаций в районах урановых месторождений. Этот пример подчеркивает значение спектральных съемок в строго ограниченных узких зонах спектра, в которых более или менее эффективно можно использовать методы дистанционного зондирования при поисково-разведочных работах. Спектральная характеристическая яркость горных пород сильно зависит от величины окна или щели спектрометра или радиометра, т. Пространственное разрешение - величина, характеризующая размер наименьших объектов, различимых на изображении найти примеры снимков горных пород. Важным является выполнение ДМИ в разных частях спектра, где различные свойства горных пород обладают контрастными спектральными характеристиками. Вторичное тепловое излучение горных пород эмиссия Наряду с характеристиками спектрального отражения поверхностей горных пород и почв в видимом и ближнем ИК-диапазонах в 1960-е годы часть геологов интересовалась и вторичным тепловым излучением горных пород, которое надеялись использовать при дистанционном зондировании. В результате исследований, проводившихся с конца 50-х годов, было установлено, что форма кривых на графиках вторичного теплового излучения горных пород тесно связана с минеральным составом пород, что силикатные и несиликатные породы можно различать по спектрам их вторичного теплового излучения в диапазоне 8-13 мкм и что, наконец, можно разделить по этим же спектрам силикатные породы разного минерального состава.
Признаком для распознавания во всех случаях служило положение минимумов на графиках вторичного теплового излучения горных пород. Рассмотрим группу графиков энергии вторичного теплового излучения, полученных при измерениях некоторых грубозернистых свежих измельченных проб гранитов из Новой Англии. Цвет отдельных проб меняется от темно-серого до коричневого, розового или голубоватого. Но различие в цвете, по мнению Лайона и Грина, не влияет на интенсивность эмиттерного излучения. Измерение положения минимума энергии на графиках рис. Для сравнения приведены оба минимума в спектре излучения кварца Q. Спектральные излучательные способности свежей поверхности грубозернистых гранитов из Новой Англии. Q — эмиссионный минимум кварца, для сравнения. Вертикальные стрелки показывают, где эмиссия равна 1. В принципе на спектральную характеристику поверхности горной породы или почвы влияют многочисленные факторы, как зависящие от свойств поверхности объекта измерения, так и не зависящие от них, а связанные с его окружением и атмосферой.
Однако для регионов, в которых обширные участки территории лишены растительного покрова, например в аридных областях, в высокогорных районах и т. Здесь можно использовать минимумы на графиках вторичного теплового излучения объектов, закономерно связанные с их минеральным составом, для интерпретации определенных литофациальных разностей пород или их комплексов. Это предположение было доказано при сканерных самолетных тепловых съемках: участки обнаженных горных пород разного состава наиболее контрастно были переданы оттенками серого тона в двух диапазонах: 8-9 и 9-11 мкм. Наименьшие значения величин этого отношения имеют горные породы или почвы, в состав которых входят кварц или плагиоклазы. Более высокие значения величин этого отношения свидетельствуют о бедности пород или почв кварцем и полевыми шпатами. Но окончательно вопрос об оптимальности и эффективности использования этих двух спектральных диапазонов для изучения литофациальных особенностей регионов по данным тепловых съемок и влиянии на них атмосферных и других помех при прохождении сигнала к приемнику, установленному на борту носителя — самолета или спутника, — не решен на современном этапе исследований. Ljon, Green, 1975. Таким образом, решающее значение для внедрения методов тепловых сканерных съемок в геологические исследования имеет возможность одновременного проведения спектрометрирования по многим критическим характерным спектральным диапазонам, то есть возможность проведения многозональной тепловой сканерной съемки с самолетов или спутников, а также возможность компьютерной обработки ее результатов и представления данных в виде оптимизированных по контрастности изображений. Одни объекты "ярче смотрятся" в дневное время, другие - ночью. Температуры поверхностей различных материалов в течение суток Lowe, 1969.
Количественная обработка данных многозональных съемок, в том числе и тепловыми сканерами и радиометрами, приобретает с каждым днем все большее значение. Уже сейчас дистанционное зондирование основывается на температурных особенностях почв, растительных сообществ или горных пород при решении оперативных задач мониторинга среды. Различные тепловые свойства горных пород табл. Здесь важно подчеркнуть, что даже информация об относительном различии в радиационных температурах поверхности объектов может оказаться решающей при геологическом дешифрировании снимков, так как возможны дополнительные критерии оценки, которые нельзя получить съемками в видимом диапазоне электромагнитных волн. Таблица 1а. Отражательная способность - величина, описывающая способность какой-либо поверхности или границы раздела двух сред отражать падающий на неё поток электромагнитного излучения. Широко используется в оптике, количественно характеризуется коэффициентом отражения. Для характеризации диффузного отражения используется величина, называемая альбедо. Способность материалов отражать излучение зависит от угла падения, от поляризации падающего излучения, а также его спектра. Зависимость отражательной способности поверхности тела от длины волны света в области видимого света глаз человека воспринимает как цвет тела.
Зависимость отражательной способности материалов от длины волны имеет важное значение при построении оптических систем. Для получения нужных свойств материалов по отражению и пропусканию света иногда используют просветление оптики как, например, при производстве диэлектрических зеркал или интерференционных фильтров. ВБР обладают узким спектром отражения, используются в волоконных лазерах, волоконно-оптических датчиках, для стабилизации и изменения длины волны лазеров и лазерных диодов и т.
В зоне 0,45-0,5 мкм голубой известняк 5 отражает падающий на него световой поток намного сильнее, чем красный алевролит А. Напротив, в зоне 0,65-0,7 мкм красной отражение красного алевролита А намного больше, чем известняка В. В зоне 0,575 мкм отражательная способность обеих пород одинакова, здесь пересекаются их спектральные кривые. Спектральные отражательные способности двух типов пород: красного алевролита А и выветрелого серого известняка В Ray R.
Из анализа графиков рис. Так, в коротковолновой части спектра кривые спектральной яркости светло-коричневого песчаника А , серого известняка В и серого песчаника D находятся близко друг к другу. Породы, имеющие разные цвет , минеральный состав и величину зерен, имеют похожие формы кривых спектральной яркости. С другой стороны, эти три разности пород отражают падающий на них световой поток в голубой части спектра сильнее, чем красный алевролит С. В красной части спектра около 0,65-0,7 мкм светло-коричневый песчаник А отражает падающий на него световой поток сильнее, чем серый известняк В , красный алевролит S и серый песчаник D , которые в этой части спектра обнаруживают близкие спектральные характеристики. Если бы для съемки местности с обнажениями пород типа А и В была применена комбинация фильтр-пленка, при которой через светофильтр на пленку попадали бы лучи определенного цвета, то есть длины волны, например, голубые 0,4-0,5 мкм или красные 0,6-0,7 мкм , то можно было бы ожидать, что на такой спектрозональной узкозональной фотографии резкими контрастами оттенков серого тона выделятся красные аргиллиты А и серые известняки В. На таком снимке, сделанном в голубой зоне спектра, темно-серые известняки выделились бы более светлыми, а красные аргиллиты — более темными оттенками.
На аэрофотоснимке, сделанном в красной зоне спектра, фототона изменились бы на противоположные, но сохранилась бы величина контрастности между ними. Если местность с четырьмя выделенными типами пород рис. Основываясь на этих сведениях и используя подходящие комбинации фильтр-пленка, Рей и Фишер добивались наиболее контрастных изображений различных типов горных пород на аэрофотоснимках. Их исследования показали прежде всего, как важна технология съемки, тот спектральный диапазон, в котором производится съемка местности и который определяется спектральными характеристиками каждый раз своими материалов или сред — поверхностей природных и антропогенных объектов съемок. В методике исследований и использовании экспериментальных данных, примененных Рейем и Фишером, были заложены важнейшие начала для развития, начавшегося несколькими годами позднее развития многозональных съемок и способов обработки и данных при дистанционном зондировании. Для выбора оптимального спектрального канала или диапазона съемки и получения оптимального изображения при обработке данных дистанционного зондирования прежде всего необходимо знать отражательные и поглотительные способности интересующих материалов объектов съемки в предполагаемом диапазоне длин волн. В 1960-1970 гг.
Исследования ограничивались сначала измерениями в видимом и ближнем инфракрасном диапазонах электромагнитного излучения. Позднее стали изучать спектральные яркости минералов и пород в среднем ИК-диапазоне, а также их эмиссионную способность или коэффициенты теплового излучения их в температурном, или тепловом, диапазоне инфракрасного излучения. Отражательные способности важнейших минералов и горных пород в видимом и ближнем ИК-диапазонах в лабораторных условиях всесторонне исследовали Хант и его коллеги. Результаты их исследований послужили важнейшим началом для всех последующих измерений спектральных характеристик горных пород. В природных условиях отражательная способность, или альбедо, естественных поверхностей определяется влиянием ряда переменных параметров, которые лишь частично зависят от материала поверхности, а частично связаны с влиянием окружающей среды. Точнее, сравнение данных лабораторных и полевых измерений показало, что спектральная яркость одинаковых типов горных пород изменяется в зависимости от величины окна или щели спектрометра или радиометра, то есть поля измерений, в котором проводится определение коэффициента спектральной яркости объекта. Если при лабораторных измерениях охватывается площадь в несколько квадратных миллиметров, то для полевого спектрометра или радиометра поле измерений может меняться от квадратных дециметров до квадратных метров, что зависит от технических данных прибора и методики измерений.
Мультиспектральный сканер, установленный на борту спутника «Лэндсат», охватывает минимальную площадь около 6000 м кв. Кроме того, поверхности проб, измеряемых в лаборатории, гомогенны. Естественные природные поверхности, которые попадают в поле измерений спектрометра, радиометра или сканера, установленного на борту самолета или спутника, почти всегда гетерогенны, неоднородны, из-за возможных различий в структуре поверхности, вариаций минерального состава и т. Доказано, что с изменением содержания железистых минералов может меняться спектральная яркость поверхности горной породы, так как изменяется почвообразование, вид и состав растительности на ней. Спектральные яркости поверхностей горных пород, которые были получены в разное время , в разных районах и с помощью разных измерительных и съемочных систем, зависящих от назначения съемок, едва ли следует прямо сравнивать и сопоставлять друг с другом. Несмотря на это, имеющиеся данные прежних спектральных измерений показывают, что относительные различия в отражательной, поглотительной и эмиссионной способностях важнейших типов горных пород могут быть использованы при ландшафтных исследованиях и составлении тематических карт. Результаты некоторых основополагающих исследований спектральных характеристик минералов и горных пород.
Уотсон провел исследование четырех типов горных пород одной из долин шт. Оклахома в лабораторных и полевых условиях. Им были выбраны свежие размельченные пробы кварцевого песчаника и гранита, штуфы выветрелого известняка, гранита и доломита, а также покрытые коркой лишайников граниты. Каждый раз измерялись спектральные яркости нескольких проб разных типов пород. По данным проведенных измерений были построены графики рис. Спектральная отражательная способность свежей и выветрелой поверхности различных горных пород. Spectral reflectance and photometric properties of selected rocks, by R.
Watson, Remote Sensing of Environment, Vol. В большинстве случаев в видимой части спектра свежие, невыветрелые поверхности гранитов отражают излучение сильнее, чем поверхности тех же пород, но выветрелые или покрытые лишайниками. Выветрелые шероховатые поверхности хуже отражают во всех интервалах длин волн. В видимом диапазоне электромагнитных волн поверхности выветрелых известняков отражают большую часть падающего излучения всегда сильнее, чем поверхности выветрелых доломитов рис. Кварцевый песчаник на свежем изломе благодаря своей чистой и однородной поверхности отражает падающий поток значительно сильнее, чем другие типы пород рис. Уотсон подчеркивает, что сравнение значений отражения, измеренных в лаборатории и на местности, может быть только приближенным. Прежде всего напомним, что спектрометром в лаборатории и на местности измеряются разные по величине площади.
Уже поэтому возможны сильные различия в измеренных величинах отражения. К тому же угол освещения в лаборатории постоянный или регулируемый, а в естественных условиях, на природе, угол падения солнечных лучей меняется в зависимости от времени дня и года, что приводит к переменному освещению объекта. Различные значения естественной освещенности изменяют интенсивность спектрального отражения одних и тех же поверхностей в течение дня и в разное время года. Поэтому значения спектральных яркостей, полученные в разное время наземными измерениями или в результате облетов тестовых участков, не сопоставимы или сопоставимы условно друг с другом. Еще одно сравнение отражательной способности выветрелых и свежих поверхностей горных пород: риолита, базальта и туфа рис. Как видно из графика, форма характеристических кривых почти не меняется, что можно объяснить устойчивостью спектральных признаков определенных типов пород. Спектральная отражательная способность свежей и выветрелой поверхности горных пород на примере риолита К , базальта и туфа.
Отражательная способность каменного угля – подробно об этом свойстве
Как называется величина, которая характеризует отражательную способность различных тел? Слово из 7 букв, ответ: Альбедо 12. Система научно-материалистических воззрений, отвергающая всю совокупность религиозных представлений. Слово из 6 букв, ответ: Атеизм 13. Слово из 9 букв, ответ: Богатство 15. Славянский бог весны, солнца, любви и плодородия, который, как считалось, подарил людям хлеб. Слово из 5 букв, ответ: Ярило 16. Эта страна, согласно А. Городницкому, «хоть похожа на Россию, только всё же не Россия».
Слово из 6 букв, ответ: Канада 17. Город в Северной Италии, в котором проходил матч-турнир на первенство мира по шахматам между А. Карповым и Г. Слово из 6 букв, ответ: Мерано 18. Французская певица, послужившая Ж. Санд прототипом героини при написании романа «Консуэло». Слово из 6 букв, ответ: Виардо 19. Слово из 6 букв, ответ: Хозяин 20.
Следствие езды по вчерашним дорогам на завтрашних машинах с послезавтрашней скоростью. Слово из 6 букв, ответ: Авария 21. Народное название никчёмного человека, лентяя и бездельника. Слово из 7 букв, ответ: Оболтус 24. Один из лучших пейзажистов в истории русской живописи, автор картины «Вечер. Золотой Плёс». Слово из 7 букв, ответ: Левитан 31. Эту звезду в созвездии Персея древние называли глазом горгоны Медузы или звездой Дьявола.
Слово из 6 букв, ответ: Алголь 33. Расширяющийся книзу удлинённый глиняный горшок для молока. Слово из 6 букв, ответ: Кринка 35. Собачья должность на барской службе, «куратор» господской своры. Слово из 5 букв, ответ: Псарь 36. Житель Крайнего Севера России. Слово из 5 букв, ответ: Чукча 37. Сырцовый кирпич из глины с добавлением резаной соломы, костры, мякины.
Слово из 5 букв, ответ: Адоба 38. В старину — сомкнутое полевое укрепление с наружным рвом и бруствером. Слово из 5 букв, ответ: Редут 39. Одиннадцатый султан Османской империи, сын Сулеймана Великолепного. Слово из 5 букв, ответ: Селим 40. Драгоценный камень, который, как считают, наделяет мужчин щедростью, а женщин красотой. Слово из 5 букв, ответ: Топаз 41. И лиственное дерево, и многоцелевая атомная подводная лодка — одним словом.
Слово из 5 букв, ответ: Ясень 43. Про удочку есть такая загадка: «Дядя … и тётя нить простачков пришли ловить». Слово из 5 букв, ответ: Хлыст 44. Плавный парный бальный танец, старинный способ вскружить друг другу голову. Слово из 5 букв, ответ: Вальс 46. Морская рыба, обладательница «челюстей», напугавших миллионы кинозрителей. Слово из 5 букв, ответ: Акула 47. Герой С.
Жигунова в фильме В. Попкова «Сердца трёх». Слово из 5 букв, ответ: Генри 49. Слово из 9 букв, ответ: Отечество 52. Одно из любимейших наших комнатных растений, особенно в условиях достаточно холодного русского климата. Слово из 9 букв, ответ: Амариллис 53. Не только «камень таинственной Изиды», а также старинное название изумруда. Слово из 7 букв, ответ: Смарагд 55.
Именно она должна появиться в деревне, чтобы эту деревню стали называть селом. Слово из 7 букв, ответ: Церковь 58. Изысканный армянский коньяк, напиток, который никого не оставляет равнодушным. Слово из 5 букв, ответ: Наири 59. Главное оружие Соловья-разбойника. Слово из 5 букв, ответ: Свист 60. Музыкальный «восьмичлен», результат объединения дуэта и секстета. Слово из 5 букв, ответ: Октет 61.
Древняя метательная машина в виде большой катапульты для стрельбы камнями или бочками. Слово из 5 букв, ответ: Онагр 63. В Древнем Риме — конный отряд флангового прикрытия пехоты. Слово из 3 букв, ответ: Ала 65. Как в старину на Руси называли дно, испод, основание? Слово из 3 букв, ответ: Тло 69. Город, расположенный в дельте Ганга, столица Бангладеш.
Использованный мультиспектральный сканер имел спектральное разрешение в видимом диапазоне 0,04-0,06 мкм, в ближнем ИК-диапазоне 0,05-0,26 мкм и в тепловом диапазоне 0,25-0,36 мкм. Только один из спектральных каналов этого сканера действовал в том же спектральном диапазоне, что и сканеры первых спутников «Лэндсат» — от 0,4 до 1,1 мкм, остальные четыре оптимальных канала работали в длинноволновой, инфракрасной, области излучения, значение которой подчеркивалось вышеприведенными примерами. Исследованиями спектральных характеристик неизмененных и измененных пород близ урановых месторождений установлен ряд спектральных зон: 1,25; 0,95; 2,20; 2,15; 1,75; 2,45; 2,10; 1,60; 1,55 и 0,75 мкм, измерения в которых, проведенные в указанной последовательности, наиболее эффективны для разделения литофаций в районах урановых месторождений.
Этот пример подчеркивает значение спектральных съемок в строго ограниченных узких зонах спектра, в которых более или менее эффективно можно использовать методы дистанционного зондирования при поисково-разведочных работах. Спектральная характеристическая яркость горных пород сильно зависит от величины окна или щели спектрометра или радиометра, т. Пространственное разрешение - величина, характеризующая размер наименьших объектов, различимых на изображении найти примеры снимков горных пород. Важным является выполнение ДМИ в разных частях спектра, где различные свойства горных пород обладают контрастными спектральными характеристиками. Вторичное тепловое излучение горных пород эмиссия Наряду с характеристиками спектрального отражения поверхностей горных пород и почв в видимом и ближнем ИК-диапазонах в 1960-е годы часть геологов интересовалась и вторичным тепловым излучением горных пород, которое надеялись использовать при дистанционном зондировании. В результате исследований, проводившихся с конца 50-х годов, было установлено, что форма кривых на графиках вторичного теплового излучения горных пород тесно связана с минеральным составом пород, что силикатные и несиликатные породы можно различать по спектрам их вторичного теплового излучения в диапазоне 8-13 мкм и что, наконец, можно разделить по этим же спектрам силикатные породы разного минерального состава. Признаком для распознавания во всех случаях служило положение минимумов на графиках вторичного теплового излучения горных пород. Рассмотрим группу графиков энергии вторичного теплового излучения, полученных при измерениях некоторых грубозернистых свежих измельченных проб гранитов из Новой Англии. Цвет отдельных проб меняется от темно-серого до коричневого, розового или голубоватого. Но различие в цвете, по мнению Лайона и Грина, не влияет на интенсивность эмиттерного излучения.
Измерение положения минимума энергии на графиках рис. Для сравнения приведены оба минимума в спектре излучения кварца Q. Спектральные излучательные способности свежей поверхности грубозернистых гранитов из Новой Англии. Q — эмиссионный минимум кварца, для сравнения. Вертикальные стрелки показывают, где эмиссия равна 1. В принципе на спектральную характеристику поверхности горной породы или почвы влияют многочисленные факторы, как зависящие от свойств поверхности объекта измерения, так и не зависящие от них, а связанные с его окружением и атмосферой. Однако для регионов, в которых обширные участки территории лишены растительного покрова, например в аридных областях, в высокогорных районах и т. Здесь можно использовать минимумы на графиках вторичного теплового излучения объектов, закономерно связанные с их минеральным составом, для интерпретации определенных литофациальных разностей пород или их комплексов. Это предположение было доказано при сканерных самолетных тепловых съемках: участки обнаженных горных пород разного состава наиболее контрастно были переданы оттенками серого тона в двух диапазонах: 8-9 и 9-11 мкм. Наименьшие значения величин этого отношения имеют горные породы или почвы, в состав которых входят кварц или плагиоклазы.
Более высокие значения величин этого отношения свидетельствуют о бедности пород или почв кварцем и полевыми шпатами. Но окончательно вопрос об оптимальности и эффективности использования этих двух спектральных диапазонов для изучения литофациальных особенностей регионов по данным тепловых съемок и влиянии на них атмосферных и других помех при прохождении сигнала к приемнику, установленному на борту носителя — самолета или спутника, — не решен на современном этапе исследований. Ljon, Green, 1975. Таким образом, решающее значение для внедрения методов тепловых сканерных съемок в геологические исследования имеет возможность одновременного проведения спектрометрирования по многим критическим характерным спектральным диапазонам, то есть возможность проведения многозональной тепловой сканерной съемки с самолетов или спутников, а также возможность компьютерной обработки ее результатов и представления данных в виде оптимизированных по контрастности изображений. Одни объекты "ярче смотрятся" в дневное время , другие - ночью. Температуры поверхностей различных материалов в течение суток Lowe, 1969. Количественная обработка данных многозональных съемок, в том числе и тепловыми сканерами и радиометрами, приобретает с каждым днем все большее значение. Уже сейчас дистанционное зондирование основывается на температурных особенностях почв, растительных сообществ или горных пород при решении оперативных задач мониторинга среды. Различные тепловые свойства горных пород табл. Здесь важно подчеркнуть, что даже информация об относительном различии в радиационных температурах поверхности объектов может оказаться решающей при геологическом дешифрировании снимков, так как возможны дополнительные критерии оценки, которые нельзя получить съемками в видимом диапазоне электромагнитных волн.
Таблица 1а. Отражательная способность - величина, описывающая способность какой-либо поверхности или границы раздела двух сред отражать падающий на неё поток электромагнитного излучения. Широко используется в оптике, количественно характеризуется коэффициентом отражения. Для характеризации диффузного отражения используется величина, называемая альбедо. Способность материалов отражать излучение зависит от угла падения, от поляризации падающего излучения, а также его спектра. Зависимость отражательной способности поверхности тела от длины волны света в области видимого света глаз человека воспринимает как цвет тела. Зависимость отражательной способности материалов от длины волны имеет важное значение при построении оптических систем. Для получения нужных свойств материалов по отражению и пропусканию света иногда используют просветление оптики как, например, при производстве диэлектрических зеркал или интерференционных фильтров. ВБР обладают узким спектром отражения, используются в волоконных лазерах, волоконно-оптических датчиках, для стабилизации и изменения длины волны лазеров и лазерных диодов и т. Фотометрия др.
Один из основных экспериментальных методов изучения оптических свойств материалов, и в особенности полупроводниковых микро- и наноструктур. Он позволяет прикладывать к диэлектрическим объектам силы от фемтоньютонов до наноньютонов и измерять расстояния от нескольких нанометров до микронов. В последние годы оптические пинцеты начали использовать в биофизике для изучения структуры и принципа работы... Давление электромагнитного излучения , давление света - давление, которое оказывает световое и вообще электромагнитное излучение, падающее на поверхность тела. Это позволяет увеличить светопропускание оптической системы и повысить контрастность изображения за счёт подавления бликов. Это явление обычно характеризуется чередующимися в пространстве максимумами и минимумами интенсивности света. Конкретный вид такого распределения интенсивности света в пространстве или на экране, куда падает свет, называется интерференционной картиной. Эффект Керра , или квадратичный электро оптический эффект , - явление изменения значения показателя преломления оптического материала пропорционально квадрату напряжённости приложенного электрического поля. Отличается от эффекта Поккельса тем, что изменение показателя прямо пропорционально квадрату электрического поля, в то время как последний изменяется линейно.
Коэффициент отражения - 7 букв Ответ на сканворд или кроссворд: Отражательная способность Ответ на вопрос: Отражательная способность, слово состоит из 7 букв. Что такое Отражательная способность? Почему Отражательная способность именно Посмотреть ответ Происхождение слова Посмотреть ответ.
Как видно из графика, форма характеристических кривых почти не меняется, что можно объяснить устойчивостью спектральных признаков определенных типов пород. Спектральная отражательная способность свежей и выветрелой поверхности горных пород на примере риолита К , базальта и туфа. The multiband approach to geological mapping from orbiting satellites: is it redundant or vital? Lyon, Remote Sensing of Environment, Vol. А — риолит; В — гидротермально измененный базальт; ВТ — туф с аметистом; индекс W выветрелые пробы. Рассмотрим теперь количественную зависимость спектральной яркости поверхностей разных типов горных пород от густоты покрывающей их растительности. Эти измерения проводились в поле спектрометром с шириной диапазона измерений от 0,45 до 2,4 мкм, т. В качестве объектов были выбраны поверхности андезита, базальта, риолита, лавы красно-оранжевой , кварца, трахиандезита латита , известняка, красного глинистого сланца, лимонитизированных и аргилитизированных щебня и почвы, окварцованного известняка и мраморизованного доломита с лимонитом. Поверхности каждого типа пород были покрыты неоднородным по густоте покровом зеленых луговых трав, и семени сосны, а также кустиками толокнянки и увядшего шалфея. Влияние плотности растительного покрова на величину спектрального отражения андезита, известняка и глиноземистых лимонитизированных выветрелых почв показано на рис. На этих графиках сопоставляется яркость не покрытых растениями и заросших поверхностей горных пород густота растительности в поле измерения спектрометра выражена в процентах. Как и ожидалось, эффект растительности в спектре отраженного потока энергии четко выражен только для горных пород с незначительным альбедо. Даже при незначительном растительном покрове была затруднена идентификация спектральных сигналов пород этих двух типов. Влияние растительности разных видов и разной плотности на спектральную яркость андезита, известняка и лимонитизированной глинистой почвы с обломками выветрелой горной породы почва на коре выветривания : а - луговые травы; б - заросли толокнянки; в - заросли засохшего шалфея. Это очевидно из сравнения двух рассмотренных групп графиков ср. Конечно, с увеличением густоты растительности уменьшается альбедо известняка и лимонитизированной глиноземистой почвы. Сухая и увядающая растительность изменяет характер спектра пород и почв мало. Она только уменьшает величину альбедо. Изучение спектральных характеристик природных объектов способствовало выбору двух наиболее оптимальных интервалов длин волн: 1,2-1,3 и 1,6-2,2 мкм, в которых возможен поиск медно-порфирового оруденения в неизмененных интрузивных, вулканогенных и осадочных породах по зонам вторичных минералов и пород, образующихся в результате гидротермальных изменений. В результате лабораторных измерений было установлено, что определенные минералы, которые встречаются в зонах гидротермально измененных пород близ месторождений, например, медно-порфировых руд, имеют специфические спектральные признаки, особенно в интервале длин волн 2,1-2,4 мкм. Эти признаки можно использовать для дистанционного зондирования. Так, каолинит, монтмориллонит, алунит и кальцит распознаются по характерным узким и широким полосам поглощения энергии в среднем инфракрасном диапазоне рис. Исходя из предположения, что с помощью десятиканального радиометра с диапазоном измерений 0,5-2,3 мкм удастся отыскать для начала хотя бы каолин или карбонатные породы по их спектральным характеристикам, были проведены экспериментальные съемки с борта космического корабля многоразового использования «Спейс шаттл Колумбия». Наряду с измерениями в специфических узких зонах спектра были предложены и измерения в определенной комбинации зон или каналов для доказательства возможности определения интересующих минералов. Проведенными на тестовом участке исследованиями была доказана эффективность предложенной комбинации двух каналов; 1,6 и 2,2 мкм. Первый из них очень важен для обнаружения гидроксильных групп в минералах, типичных для гидротермально измененных зон месторождений. По данным проведенных измерений в обоих этих каналах оказалось возможным различать лимонитизированные, гидротермально измененные породы и магматические породы в большинстве случаев тоже с лимонитом, который образуется в результате окисления железо-магниевых минералов и раскристаллизации стекла. Кроме того, обнаружились сильно осветленные гидротермально измененные породы без лимонита, если они имели в своем составе минералы с гидроксильной группой ОН-. Спектральная отражательная способность некоторых минералов, встречающихся на участках развития гидротермальных изменений в горных породах по данным лабораторных измерений. Для определения минералов важным оказалось положение спектральных полос поглощения, 1 — каолинит; 2 — монтмориллонит; 3 — алунит; 4 — кальцит. Использование среднего инфракрасного диапазона стало возможным только в последние годы благодаря разработке таких приемников, которые позволили проводить эти измерения. Тематические изображения-схемы получаются многозональным сканером спутника «Лэндсат-4», имеющим специальный канал 2,2 мкм, предназначенный для составления карт литофаций или минеральных фаций. По результатам одного из экспериментов, проведенного для решения геологических задач дистанционными методами, был сделан вывод об эффективности спектрометрирования в следующих зонах спектра: 1,18-1,3; 4,0-4,75; 0,46-0,50; 1,52-1,73; 2,10-2,36 мкм. Этот вывод основан на результатах обработки данных с одного тестового участка в шт. Измерения проводились многозональным сканером во время облета территории участка с обнаженными выходами пород основных типов — осадочных и интрузивных, а также с зонами их вторичных гидротермальных изменений. Размер поля измерения по поверхности изучаемой породы составлял около 0,24 км кв. Для всех типов пород измерения проводились по 15 каналам с интервалом между ними 0,34-0,75 мкм. С помощью дискриминантного анализа были выявлены зоны, в которых чаще всего проводилась съемка всех разностей пород с оптимальным контрастом специфических разностей пород по отношению к другим типам. Запись выделенных зон предназначалась для повторного изучения и картирования литофациальных разностей. Использованный мультиспектральный сканер имел спектральное разрешение в видимом диапазоне 0,04-0,06 мкм, в ближнем ИК-диапазоне 0,05-0,26 мкм и в тепловом диапазоне 0,25-0,36 мкм. Только один из спектральных каналов этого сканера действовал в том же спектральном диапазоне, что и сканеры первых спутников «Лэндсат» — от 0,4 до 1,1 мкм, остальные четыре оптимальных канала работали в длинноволновой, инфракрасной, области излучения, значение которой подчеркивалось вышеприведенными примерами. Исследованиями спектральных характеристик неизмененных и измененных пород близ урановых месторождений установлен ряд спектральных зон: 1,25; 0,95; 2,20; 2,15; 1,75; 2,45; 2,10; 1,60; 1,55 и 0,75 мкм, измерения в которых, проведенные в указанной последовательности, наиболее эффективны для разделения литофаций в районах урановых месторождений. Этот пример подчеркивает значение спектральных съемок в строго ограниченных узких зонах спектра, в которых более или менее эффективно можно использовать методы дистанционного зондирования при поисково-разведочных работах. Спектральная характеристическая яркость горных пород сильно зависит от величины окна или щели спектрометра или радиометра, т. Пространственное разрешение - величина, характеризующая размер наименьших объектов, различимых на изображении найти примеры снимков горных пород. Важным является выполнение ДМИ в разных частях спектра, где различные свойства горных пород обладают контрастными спектральными характеристиками. Вторичное тепловое излучение горных пород эмиссия Наряду с характеристиками спектрального отражения поверхностей горных пород и почв в видимом и ближнем ИК-диапазонах в 1960-е годы часть геологов интересовалась и вторичным тепловым излучением горных пород, которое надеялись использовать при дистанционном зондировании. В результате исследований, проводившихся с конца 50-х годов, было установлено, что форма кривых на графиках вторичного теплового излучения горных пород тесно связана с минеральным составом пород, что силикатные и несиликатные породы можно различать по спектрам их вторичного теплового излучения в диапазоне 8-13 мкм и что, наконец, можно разделить по этим же спектрам силикатные породы разного минерального состава. Признаком для распознавания во всех случаях служило положение минимумов на графиках вторичного теплового излучения горных пород. Рассмотрим группу графиков энергии вторичного теплового излучения, полученных при измерениях некоторых грубозернистых свежих измельченных проб гранитов из Новой Англии. Цвет отдельных проб меняется от темно-серого до коричневого, розового или голубоватого. Но различие в цвете, по мнению Лайона и Грина, не влияет на интенсивность эмиттерного излучения.