Ученые НИТУ «МИСиС» представили инновационный автономный источник питания — компактную атомную батарейку, которая может работать до 20 лет. Новости / Батарейки и аккумуляторы. Российские ученые создали атомную батарейку, которая способна работать до 20 лет. На заводе «Элемаш» в Электростали делают батарейки для ядерных реакторов, которые используют по всему миру. Российские учёные презентовали прототип атомной батареи, способной работать без подзарядки 80 лет.
От смартфона до ракеты. Учёные создали "вечную" атомную батарейку
Компактные «атомные батарейки» со сроком службы до 50 лет крайне востребованы в приборах и системах, где замена источников питания затруднительна, высокозатратна или. Срок службы такой батарейки составляет не менее 50 лет, стоимость – около 4000 долларов. Мощность ядерной батарейки Betavolt на данном этапе составляет 100 микроватт, а напряжение — 3 Вольта. Ученые НИТУ «МИСиС» разработали атомную батарейку с повышенной в десять раз мощностью. Российская ядерная батарейка в отличие от традиционных источников питания получает электрическую энергию в результате естественного распада радиоактивных изотопов.
Ядерное питание: российские учёные создали атомную батарейку повышенной мощности
Betavolt планирует выпустить версию ядерной батарейки на 1 ватт к 2025 году. Российские ученые разработали прототип ядерной батарейки мощностью до 100Вт, которая может работать с помощью бета-распада никеля-63. Также известно, что атомная батарейка может быть создана на основе изотопа америций-241, в этом случае устройство будет работать 432 года. Новость «Ученые разработали атомную батарейку для космических кораблей» вызвала бы определенный интерес.
Ученые НИЯУ МИФИ создали прототип ядерной батарейки
Российские учёные из НИТУ "МИСиС" создали атомную батарейку, способную прослужить до 50 лет. Российская ядерная батарейка в отличие от традиционных источников питания получает электрическую энергию в результате естественного распада радиоактивных изотопов. Российская ядерная батарейка в отличие от традиционных источников питания получает электрическую энергию в результате естественного распада радиоактивных изотопов.
Ученые НИЯУ МИФИ создали прототип ядерной батарейки
Она также способна работать при температуре от минус 60 до плюс 120 градусов Цельсия. Фото: Betavolt Фото: Betavolt Также в компании заявили, что атомная батарея абсолютно безопасна для здоровья человека и окружающей среды, не генерирует ионизирующего излучения и пригодна для использования в медицинских устройствах, таких как кардиостимуляторы и искусственные сердца. После распада 63 изотопа превращаются в стабильный изотоп меди, который нерадиоактивен и не представляет никакой угрозы. США и Европа также работают над созданием миниатюрных ядерных батарей Ядерные батареи или радиоизотопные генераторы — это устройство, в которых энергия распада радиоактивного изотопа преобразуется в электрическую энергию. От ядерных реакторов они отличаются тем, что в них не используется цепная реакция. Технически радиоизотопные генераторы не являются батареями, поскольку в отличие от электрохимических аккумуляторов их нельзя заряжать или перезаряжать. Фото: Betavolt Фото: Betavolt Ученые Советского Союза и США смогли разработать технологию для использования в космических кораблях, подводных системах и удаленных научных станциях, однако существующие радиоизотопные генераторы являются дорогостоящими и громоздкими.
Учёные НИТУ «МИСиС» под руководством профессора кафедры полупроводниковой электроники и физики полупроводников Виктора Мурашова представили инновационный автономный источник питания — компактную атомную батарейку, которая может работать до 20 лет. Результаты исследования были опубликованы в международном научном журнале Applied Radiation and Isotopes.
Маленькая батарейка обычно светящаяся — так передавали образ художники заменила бы тысячи литров бензина или дизельного топлива.
Почти бесконечную энергию могли бы использовать не только машины, но и корабли, отправленные бороздить бескрайние просторы Вселенной. Новость «Ученые разработали атомную батарейку для космических кораблей» вызвала бы определенный интерес. Но на деле «атомные батарейки» используются давно — аж с шестидесятых годов прошлого века. Каждая из них заслуживает отдельной истории. В качестве «движущей» силы они используют нагрев, то есть тепловую энергию. Это одно из основных отличий от атомных реакторов, в которых происходит цепная ядерная реакция. Реакторы используются давно, однако они имеют большие габариты и вес, а ведь мы говорим о «космических батарейках». РИТЭГи планировалось использовать для космических аппаратов, но позже сферу применения расширили в том числе на медицинскую технику, например электрокардиостимуляторы. Первыми новую технологию, по крайней мере официально, внедрили американские военные в спутниках Transit 4A и 4B.
Батарею для них разработали в рамках программы SNAP-3. Transit 4A находится в нижней части — это цилиндр. Фото сделано незадолго до запуска в 1961 году. Это навигационный спутник, позволявший получать данные вне зависимости от погоды на поверхности. Фото: Johns Hopkins University Applied Physics Laboratory Ей предшествовало появление SNAP-1 — тестовой платформы, в которой применяли цикл Ренкина цикл преобразования тепла в работу с использованием изотопа церия и ртути в качестве теплоносителя. Инженеры продолжили работу над проектом, пытаясь решить вопрос с защитой будущих астронавтов и груза от радиации, удержав вес системы в определенных рамках: иначе ракета не взлетит. В итоге «щитом» в SNAP-2 стал усеченный конус, заполненный гидридом лития. Реактор разместили вверху, капсулу с условной командой и грузом — за нижней частью. Последовавшие испытания показали, что идея хороша, да только не работает: в определенных условиях, вероятность появления которых высока, смертельная доза радиации пройдет сквозь защиту.
Кроме того, конструкция оказалась весьма взрывоопасной. Transit 4A.
Учёные Национального исследовательского технологического университета «МИСиС» представили компактную атомную батарейку, которая в десять раз мощнее и вдвое дешевле существующих аналогов. Об этом сообщает пресс-служба вуза. Разработка описана в научном журнале Applied Radiation and Isotopes. Новая батарейка преобразует энергию радиоактивного распада в электрическую и может использоваться для питания микроэлектронной аппаратуры. Она относится к так называемым бетавольтаическим элементам. Такой элемент питания состоит из двух частей: полупроводников — преобразователей энергии и радиоактивного элемента-излучателя.
Последние новости
- В России создана атомная батарейка: может работать до ста лет
- В России создали атомную батарейку со сроком службы до 20 лет
- Российские ученые создали батарейку, работающую 100 лет
- Российские ученые оценили созданную в Китае ядерную батарейку - Онлайн-журнал «Энергия+»
- 80 лет без подзарядки: в России создали атомную батарею
Создана уникальная ядерная батарейка
Такие батареи могут стоить $100 за кВт·ч, что вдвое дешевле самых простых литий-ионных версий. Ученые НИТУ «МИСиС» разработали компактную батарейку на атомной энергии, заряда которой хватит на 20 лет. Петр Борисюк занимается разработкой атомной батарейки, способной работать без подзарядки порядка 80 лет.
От смартфона до ракеты. Учёные создали "вечную" атомную батарейку
Поэтому требовались регулярные запуски, с которыми то и дело не ладилось. На смену БЭС-5 пришли ядерные установки «Топаз», которые были мощнее предшественников более чем в два раза. Однако новые системы получили лишь два спутника, и один из них был уничтожен. Фото: kerbalspaceprogram. Однако какого-то значительного шага вперед с точки зрения эффективности сделано не было. Новые «атомные батарейки» устанавливали в автоматическую межпланетную станцию АМС «Улисс», изучавшую Солнце и Юпитер; в спускаемый зонд «Галилео» для исследования атмосферы Юпитера; в станцию «Кассини-Гюйгенс», которая исследовала Сатурн, его кольца и спутники; в АМС «Новые горизонты», выполняющую программу исследования объектов Солнечной системы. АМС «Улиcс». Китай также предпринял попытки использовать технологию — в АМС «Чанъэ-3» и вездеходе «Юйту», прибывшем на Луну тем же «рейсом». Точно не известно, были это источники питания или обогреватели, так как данные разнятся. Что дальше?
В рамках него планируется разработать систему, которая позволит активнее путешествовать по Солнечной системе. Правда, это уже не «атомные батарейки», а стационарная система на обогащенном уране. Рендер реактора Kilopower с рассеивающим тепло «зонтом». В 2019 году сообщалось о выделении средств — может, в 2024-м появится демонстрационная модель. Плутоний как топливный элемент Что касается «атомных батареек», то самые эффективные их образцы пока можно найти лишь в научной фантастике. В последнее время плутоний, уран и другие элементы таблицы Менделеева в качестве источников питания практически не рассматриваются. Там он займется поисками признаков древней жизни, будет изучать грунт и искать лед. А вот дальнейшее применение технологии под вопросом — в том числе из-за недостатка плутония, которого было много благодаря холодной войне. Сейчас производить нужный элемент дорого, так как подходит не все сырье и объемы мизерные — сотни граммов в год.
Однако не только цена и технологические сложности стали преградой для развития этого источника энергии.
Промеж 200-т алмазных полупроводников стоят 200 источников энергии, выполненных из никеля 63. Высота источника энергии составляет около 4 мм. Его вес равен 250 миллиграмм. Маленький размер — это большой плюс для Российской атомной батарейки. Сложно отыскать нужные габариты.
Большая толщина изотопа не даст появившимся в нем электронам выйти. Маленькая толщина не выгодна, так как снижается количество бета распадов в единицу времени. То же самое и с толщиной полупроводника. Лучше всего батарейка функционирует при толщине изотопа около 2-х микрон. А алмазного полупроводника 10 микрон. Но то что удалось достигнуть ученым на данный момент не является пределом. Выхлоп можно повысить еще минимум в три раза.
А это значит, что ядерную батарейку можно сделать в 3-и раза дешевле.
Как она работает? В результате бета-распада ядро изотопа выбрасывает электрон и антинейтрино либо - реже - позитрон и нейтрино излучение попадает в полупроводник, который преобразует его в электрический ток. Аналогичным образом устроена солнечная батарея, только здесь вместо фотонов от Солнца улавливается электрон от изотопа. Почему бетавольтаика так перспективна? Она даёт энергию долго - десятилетиями. Не требует обслуживания. Да, у такой батарейки низкая мощность, но зато высокая энергоёмкость. И тут не нужны тяжёлые радиоактивные изотопы вроде плутония.
Бета-распад куда более невинен. Как получить тяжёлый никель Патент на бетавольтаику был получен ещё в 1957 году, но реализовать его удалось только сейчас. Одно дело теория, другое - реально работающий гаджет. Сначала ориентировались на сверхтяжёлый водород - тритий. Но его тяжело загнать в твёрдое состояние, а работать с радиоактивным газом как-то не хочется, - объясняет один из авторов проекта, аспирант химического факультета МГУ им. Ломоносова Иван Харитонов. В итоге остановились на никеле-63. В природе такого изотопа не существует. Легче всего его получить из никеля-62, который образуется естественным путём.
Поэтому сначала пришлось воспользоваться центрифугой, чтобы увеличить концентрацию никеля-62.
Похоже на солнечные батареи, но вместо Солнца светится капсула с изотопом. А ещё плутоний даёт намного большие мощности: одна батарейка может выдавать несколько сотен ватт.
Хотя есть и свои сложности. Альфа-излучение довольно интенсивное и чаще всего сопровождается гамма-излучением. Под его воздействием понемногу разрушаются узлы батарейки: провода, преобразователи энергии и другие комплектующие.
Со временем их понадобится заменять. Например, в плутониевых батарейках оборудование способно «прожить» около 20 лет, хотя период полураспада самого изотопа куда больше — 87 лет. К тому же преобразование тут двойное: тепло превращается в свет, а потом в электричество, и по пути часть энергии теряется.
Существуют и другие способы преобразовывать альфа-излучение в электрический ток: нестандартные конструкции батареек, использование неравномерной эмиссии электронов. Но таких разработок меньше, и продвигаются они медленно из-за дороговизны комплектующих. По какой технологии создают ядерные батарейки Технологический процесс делится на несколько этапов.
В зависимости от вида батарейки этапы могут различаться — для примера покажем процесс на основе современных тритиевых батареек с сэндвич-структурой. Подготавливают радиоактивные изотопы. Изотопы не берутся из ниоткуда, их получают с помощью долгих и сложных реакций обогащения в специальных центрифугах.
Процесс создания изотопа может занимать несколько лет. Чаще всего производители ядерных батареек не готовят изотопы самостоятельно, а закупают — в России их подготовкой занимаются предприятия «Росатома». Разрабатывают полупроводниковый элемент.
Для создания полупроводников могут использовать кремний, арсенид галлия, германий и другие элементы — тут всё зависит от потребностей. Фактически производитель батарейки создаёт полупроводниковый диод на основе нужного материала. Запускают в конструкцию изотоп.
Тритий — это газ, который закачивают внутрь рабочей камеры. Там он вступает в реакцию со специальной подложкой и начинает излучать бета-частицы. Твёрдые элементы вроде никеля-63 наносят на полупроводник с помощью напыления или приклеивают в виде фольги, хотя это менее эффективно.
Потом из батарейки откачивают воздух, чтобы частицы не сталкивались и полезное излучение не уходило в никуда. Помещают батарейку в защитный корпус. Одна пара «изотоп — полупроводник» даёт довольно низкую энергию.
Поэтому, чтобы достигнуть нужной мощности, обычно в батарейке размещают несколько десятков или даже сотен таких пар. Потом конструкция помещается в герметичный защитный корпус, который не выпускает наружу радиационное излучение и защищает саму батарейку от внешних воздействий. Чем больше пар «изотоп — полупроводник» в батарейке, тем крупнее она в итоге оказывается.
Маленькие батарейки, работающие со слабыми токами, могут помещаться, например, в кардиостимулятор — такой проект действительно существовал в США. А вот чтобы собрать батарейку, способную питать условный компьютер, уже нужна конструкция весом как минимум в несколько килограммов.
Почему ядерные батарейки так и не стали популярны? История почти забытой технологии
Что же касается высокой стоимости радиоизотопных источников электричества, то она обусловлена сложностями с выбором делящегося материала. Ведь для этого нужны такие вещества, которые при собственной достаточно высокой активности в процессе распада не будут давать чрезмерно активных продуктов и нейтронов, иначе потребуется еще более мощное экранирование. Да и утилизация такого устройства окажется большой проблемой. Кроме того, гамма-излучатели и источники нейтронов безопасно использовать пока вовсе не получится.
Пожалуй, ближе всего к образу «атомной батарейки» для компактной электроники — бетавольтаические тритиевые элементы питания. Они выглядят как этакие золотистые чипы, или похожи на пузатые банковские карточки. Их стоимость колеблется в диапазоне от одной до трех тысяч долларов, и они могут более десятка лет выдавать ток в сотни наноампер при напряжении до 2,4 вольта.
Такие элементы питания используются в слаботочных датчиках, где просто распаиваются на плате.
Внутри нее содержится 63 ядерных изотопа, при этом ее размер меньше монеты, сообщает газета Independent. Основное преимущество состоит в том, что ни жара, ни холод не могут нанести вред радионуклидной батарее. Между тем разработчики утверждают, что она совершенно безвредна и безопасна.
Действительно ли она безопасна для человека и будет ли производство батареек дорогим, рассказывает доцент кафедры радиохимии химического факультета МГУ Владимир Петров: — Будет дорогой однозначно. Изотоп никеля-63 получают из никеля-62, это один из природных изотопов никеля, но, чтобы этот никель-63 был чистым, нужно из природной смеси изотопов никеля выделить именно никель-62, для массового потребления это будет недешево. Так как энергия этих электронов не очень большая, то и проникающая способность у них невелика, то есть все, что вылетает из никеля-63, за стенки батарейки не вылетает. С этой точки зрения можно сказать, что такие батареи относительно безопасны для человека.
Разработка описана в научном журнале Applied Radiation and Isotopes. Новая батарейка преобразует энергию радиоактивного распада в электрическую и может использоваться для питания микроэлектронной аппаратуры.
Она относится к так называемым бетавольтаическим элементам. Такой элемент питания состоит из двух частей: полупроводников — преобразователей энергии и радиоактивного элемента-излучателя. Исследователи разработали особую конструкцию микроканальную 3D-структуру атомной батареи, в которой расположение радиоактивного элемента изотопа никеля предотвращает потерю мощности, вызываемую обратным током. В числе прочих преимуществ разработчики отмечают упрощение технологии изготовления атомной батареи, что вдвое удешевляет её производство.
Третий Чернобыль? Что в КНДР с реактором атомной станции Зато у американских учёных есть вполне жизнеспособный образец.
Разумеется, атомная батарейка в современном её виде — это почти всегда прототип, который нужно дорабатывать. Но американская технология существенно отличается от российской. Два прототипа бета-гальванических батарей значительно мощнее российских, хоть и работают по схожему принципу — преобразовывают радиоактивное бета-излучение в электрический ток. Репетиция конца света. Как российские подлодки стреляют ядерным залпом В компании NDB разработчик батарейки утверждают, что продукт позволит "вечно" снабжать энергией абсолютно любое устройство: от смартфона до небольшой баллистической ракеты, которая может автономно и скрытно храниться где-нибудь недалеко от противника. Прототипы атомной батарейки NDB уже прошли испытания в Ливерморской национальной лаборатории и "атомной" лаборатории Кембриджского университета.
Американцам, кстати, принадлежит и пальма первенства по внедрению такой технологии на военные и гражданские спутники и космические аппараты. Первые образцы атомных батареек устанавливали на спутники Transit 4A и 4B. В обоих случаях учёные подтвердили, что эффективность энерговыделения у прототипов NDB оказалась на уровне 40 процентов. Для сравнения: КПД конкурирующих батарей колеблется в районе 15 процентов. С американской атомной батарейкой всё почти идеально — она не превышает в размерах обычный микрочип, не требует обслуживания и позволяет обеспечить значительным количеством электроэнергии целую серверную крупного предприятия. Единственный недостаток американского устройства — быстрый выход из строя.
Научный сотрудник факультета физики Сямэньского университета в Китае Константин Ян отметил, что этот ресурс может вырабатываться за несколько лет.
ЧИТАЙТЕ ТАКЖЕ:
- Атомная батарейка в современном мире
- Атомная батарейка. 80 лет без подзарядки
- Атомная батарейка. 80 лет без подзарядки
- В России создали атомную батарейку со сроком службы до 20 лет
Ядерное питание: российские учёные создали атомную батарейку повышенной мощности
Об этом сообщает пресс-служба вуза. Разработка описана в научном журнале Applied Radiation and Isotopes. Новая батарейка преобразует энергию радиоактивного распада в электрическую и может использоваться для питания микроэлектронной аппаратуры. Она относится к так называемым бетавольтаическим элементам. Такой элемент питания состоит из двух частей: полупроводников — преобразователей энергии и радиоактивного элемента-излучателя.
Исследователи разработали особую конструкцию микроканальную 3D-структуру атомной батареи, в которой расположение радиоактивного элемента изотопа никеля предотвращает потерю мощности, вызываемую обратным током.
Но не все так плохо. В космосе не только светло, но и темно В батарейках на основе диоксида плутония-238 увидели смысл в космической промышленности. Например, на околоземной орбите спутнику достаточно солнечных батарей размером с 4 парковочных места. Для полета к Марсу понадобится вдвое большая площадь. К Юпитеру — еще увеличить раз в 8. Чем дальше от Солнца летит космический аппарат, тем меньше и меньше и меньше эффективность солнечных батарей. Поскольку абсолютно все тепло от работающей установки невозможно поглотить и передать на провода, она ощутимо нагревалась.
Для космических аппаратов это оказалось даже плюсом — абсолютный минус черного межпланетного пространства уже не страшен. РИТЭГ давал спутникам и электричество, и тепло. Кстати, в фантастическом фильме «Марсианин» Ридли Скотта главный герой ищет решение — ему нужно поехать на ровере на большое расстояние. Чтобы не замерзнуть по ночам в зависимости от удаленности от полюсов температура там составляет от -80 С до -135 С , он берет с собой в путь небольшой РИТЭГ. А еще он первым сделал снимки спутников Юпитера и Сатурна. Стоит рассмотреть миссию «Кассини-Гюйгенс» — она проработала почти 20 лет, передала без малого полмиллиона снимков и 635 гигабайт разных данных. Станция несла зонд, который спустился на поверхность Титана спутник Сатурна, на котором есть вода в стабильном состоянии и прислал фото с нее. На борту было 32,8 килограмм чистого и свежего 238-го.
Затраты на миссию вышли больше, чем в 3,2 миллиарда долларов, так что плутония было «всего» миллионов на 50. Но самое важное — такое количество вещества ни одна страна в мире не могла произвести и за пару лет. Станция имела мощность 880 ватт в 1997 и около 670 ватт в 2010. Но это лишь тепло; в начале миссии установка выделяла 292 Ватта электроэнергии. Большую эффективность при меньшем размере. Нет, период полураспада никуда не делся, но с ним проще «работать», если можно с легкостью рассчитать батарею для космического аппарата с серьезным запасом мощности на пару десятилетий, а то и больше. В батарейке МИФИ несколько иной принцип действия — изотоп в вакуумной камере нагревается до 1500 градусов Цельсия и начинает светиться.
На практике преобразование ядерной энергии в электрическую осуществляется преимущественно по непрямому ступенчатому принципу: кинетическая и кулоновская энергия альфа- и бета-частиц сначала превращаются в иную, например, тепловую, химическую, механическую, световую и т. Это наиболее перспективный радионуклид в бета-вольтаике — средняя энергия бета-частиц 63Ni 17. Группа ученых из Института ЛаПлаз под руководством Петра Борисюка предложила оригинальную физическую систему на основе 63Ni, позволяющую провести эффективную генерацию вторичных электронов непосредственно внутри наноструктурированных пленок никеля и значительно увеличить токовый сигнал, вызванный каскадом многократных неупругих соударений бета-частиц. Эта система является относительно простой с точки зрения экспериментальной реализации и представляет собой ансамбль плотно упакованных нанокластеров никеля с градиентным распределением наночастиц по размеру, осажденных на поверхности широкополосного диэлектрика — оксида кремния. Ключевая особенность системы основана на том, что вследствие размерной зависимости энергии Ферми наличие пространственно неоднородного распределения металлических наночастиц по размерам приводит к пространственному перераспределению заряда в такой системе. Это означает, что в электропроводящей системе соприкасающихся друг с другом металлических наночастиц, средний размер которых монотонно изменяется в выделенном направлении, в этом же направлении должна регистрироваться разность потенциалов. Таким образом, формирование нанокластерных пленок никеля-63 с градиентным распределением наночастиц по размерам открывает уникальную возможность и позволяет совместить сразу два важных процесса: во-первых, формировать покрытия с фиксированной разностью потенциалов определяется разницей размеров наночастиц в выделенном направлении ; во-вторых, осуществлять преобразование энергии бета-распада 63Ni в ток электронов без использования дополнительных сложных для реализации полупроводниковых систем. Главным вопросом, которому посвящена разработка НИЯУ МИФИ, является исследование электрофизических свойств формируемой нанокластерной пленки никеля и подбор оптимальных параметров эксперимента для создания эффективного преобразователя энергии бета-распада 63Ni в электричество.
В Красноярском крае разработана атомная батарейка, работающая 50 лет В Красноярском крае разработана атомная батарейка, работающая 50 лет 24 декабря 2016 На горно-химическом комбинате в Железногорске разработали атомную батарейку. Срок её службы — пятьдесят лет. Ближайшую перспективу применения атомных батареек создатели видят в медицине.
Ядрена батарейка
Например, в качестве аварийного источника питания небольших датчиков. Также по теме Слоёная батарея: учёные предложили новую технологию создания натриевых аккумуляторов Российские и немецкие исследователи выяснили, что в аккумуляторных батареях вместо редкого и дорогого лития можно использовать натрий,... Несмотря на относительную безопасность для человека и возможность работать до 20 и более лет, атомные батарейки пока не находят применения в быту из-за дороговизны производства. Но это очень-очень дорого и сложно. Потребуется много радиоактивного материала, батарейки начнут вскрывать, а это уже вопросы безопасности производства, использования и переработки», — сообщил в разговоре с RT Сергей Леготин. В настоящий момент разработка МИСиС проходит процедуру международного патентования, а сам вуз признан зарубежными экспертами «одним из ключевых участников мирового рынка бетавольтаических батарей», отмечает пресс-служба университета.
Кроме того, никель-63 испускает мягкое бета-излучение, поэтому для него легко создать физическую защиту. Это делает применение никеля-63 достаточно доступным. Ранее телеканал «Санкт-Петербург» сообщил , что китайская компания BOE представила на Европейской выставке профессионального аудиовизуального оборудования уникальный монитор, который позволяет видеть 3D-изображения без очков.
Это открытие позволяет в дальнейшем разрабатывать носители энергии маленького размера, но с большими мощностями. Ядерные батарейки представляют собой источник тока, который преобразовывает электричество из энергии радиоактивного распада метастабильных ядер. Такие источники энергии могут работать без подзарядки в течение нескольких лет. Об этом пишет издание Applied Physics Letters.
Она относится к так называемым бетавольтаическим элементам. Такой элемент питания состоит из двух частей: полупроводников — преобразователей энергии и радиоактивного элемента-излучателя. Исследователи разработали особую конструкцию микроканальную 3D-структуру атомной батареи, в которой расположение радиоактивного элемента изотопа никеля предотвращает потерю мощности, вызываемую обратным током. Эффективная площадь преобразования бета-излучения в электрическую энергию в сравнении с аналогами увеличилась в 14 раз, что в результате дало общее увеличение тока. В числе прочих преимуществ разработчики отмечают упрощение технологии изготовления атомной батареи, что вдвое удешевляет её производство. Применение такой батареи возможно лишь в специальных микроэлектронных устройствах, в том числе в приборах, работающих в критических условиях — в космосе, под водой или в горах, отмечают исследователи.
Форма поиска
- Комментарии
- «Это совершенно безопасно» — в Китае создали ядерную батарейку размером меньше монеты
- Росатом Госкорпорация «Росатом» ядерные технологии атомная энергетика АЭС ядерная медицина
- Российские учёные создали атомную батарейку повышенной мощности
Батарейка для Севморпути будет работать на плутонии-238
Как устроена батарейка на ядерном топливе, и насколько она безопасна? Многоствольные скорострельные пулемёты. В России представили прототипы уникальных ядерных батареек, срок службы которых составляет более пятидесяти лет. С учётом улучшенных характеристик российская атомная батарейка сможет занять существенную долю этого рынка, уверены исследователи. С учётом улучшенных характеристик российская атомная батарейка сможет занять существенную долю этого рынка, уверены исследователи. Атомная термоэлектрическая станция (АТСТ) малой мощности "Елена-М", разработанная в Национальном исследовательском центре "Курчатовский институт", и РИА Новости. В итоге атомная батарейка способна проработать не менее 50 лет.