Новости нервные импульсы поступают непосредственно к железам по

От него по волокнам симпатической нервной системы импульсы идут к мышцам сосудов и вызывают их сокращение, вследствие чего наступает сужение сосудов. По нисходящим волокнам нервные импульсы от нейронов головного мозга проводятся вниз – к нижерасположенным сегментам спинного мозга. Нервные импульсы поступают непосредственно. Нервный Импульс по аксону. По аксонам нервные импульсы поступают к. Взаимосвязь нейронов. Нервные импульсы поступают непосредственно к железам по 1) аксонам. Нервные импульсы поступают непосредственно к железам по 1. аксонам двигательных нейронов 2. аксонам вставочных мозга 4. белому в-ву спинного мозга.

Нервные импульсы поступают непосредственно к железам по...?

Отдел нервной системы. 1) вегетативный 2) соматический. среды путем модификационного приема и проведения импульсов, поступающим по различным каналам. медиаторов нервного импульса. 2293 ответа - 29508 раз оказано помощи. Нервные импульсы поступают непосредственно к железам по 1) аксонам двигательных нейронов. Импульсы, исходящие от коры, затормозили нервные центры продолговатого мозга. Нервные импульсы поступают непосредственно к мышцам и железам по.

Информация

Величина сокращения степень укорочения мышцы при данной силе раздражения зависит как от ее морфологических свойств, так и от физиологического состояния. Длинные мышцы сокращаются на большую величину, чем короткие. Умеренное растяжение мышцы увеличивает ее сократительный эффект, при сильном растяжении сокращенные мышцы расслабляются. Если в результате длительной работы развивается утомление мышцы, то величина ее сокращения падает. Для измерения силы мышцы определяют либо тот максимальный груз, который она в состоянии поднять, либо максимальное напряжение, которое она может развить в условиях изометрического сокращения. Эта сила может быть очень велика. Так, установлено, что собака мышцами челюсти может поднять груз, превышающий вес ее тела в 8,3 раза. Одиночное мышечное волокно может развивать напряжение, достигающее 100-200 мг. Учитывая, что общее число мышечных волокон в теле человека равно приблизительно 15-30 млн. Сила мышц при прочих равных условиях зависит от ее поперечного сечения.

Чем больше сумма поперечных сечений всех ее волокон, тем больше тот груз, который она в состоянии поднять. При этом имеется ввиду т. Сила мышц с косыми волокнами больше, чем с прямыми, так как физиологическое ее сечение больше при одинаковом геометрическом. Таким образом вычисляют удельную абсолютную силу мышцы. Работа мышц измеряется произведением поднятого груза на величину укорочения мышцы. Между грузом, который поднимает мышца, и выполняемой ею работой существует следующая закономерность. Внешняя работа мышцы равна нулю, если мышца сокращается без нагрузки. По мере увеличения груза работа сначала увеличивается, а затем постепенно падает. Наибольшую работу мышца совершает при некоторых средних нагрузках.

Поэтому зависимость работы и мощности от нагрузки получила название правила закона средних нагрузок. Работа мышц, при которой происходит перемещение груза и движение костей в суставах, называется динамической. Работа мышцы, при которой мышечные волокна развивают напряжение, но почти не укорачиваются - статической. Пример - вис на шесте. Статическая работа более утомительна, чем динамическая. Утомление мышцы. Утомлением называется временное понижение работоспособ- ности клетки, органа или целого организма, наступающее в результате работы и исчезающее после отдыха. Если длительно раздражать ритмическими электрическими стимулами изолированную мышцу, к которой подвешен небольшой груз, то амплитуда ее сокращений постепенно убывает, пока не сойдет до нуля. Регистрируется кривая утомления.

Наряду с изменением амплитуды сокращений при утомлении нарастает латентный период сокращения, удлиняется период расслабления мышцы и увеличивается порог раздражения, то есть понижается возбудимость. Все эти изменения возникают не сразу после начала работы, существует некоторый период, в течение которого наблюдается увеличение амплитуды сокращений и небольшое повышение возбудимости мышцы. При этом она становится легко растяжимой. В таких случаях говорят, что мышца "врабатывается", то есть приспосабливается к работе в заданном ритме и силе раздражения. После периода врабатываемости наступает период устойчивой работоспособности. При дальнейшем длительном раздражении наступает утомление мышечных волокон. Понижение работоспособности изолированной из организма мышцы при ее длительном раздражении обусловлено двумя основными причинами. Часть этих продуктов, а также ионы Са диффундируют из волокон наружу в околоклеточное пространство и оказывают угнетающее действие на способность возбудимой мембраны генерировать ПД. Так, если изолированную мышцу, помещенную в небольшой объем жидкости Рингера, довести до полного утомления, то достаточно только сменить омывающий ее раствор, чтобы восстановились сокращения мышцы.

Другой причиной развития утомления изолированной мышцы является постепенное истощение в ней энергетических запасов. При длительной работе резко уменьшается содержание в мышце гликогена, вследствие чего нарушаются процессы ресинтеза АТФ и КФ, необходимых для осуществления сокращения. Следует оговорить, что в естественных условиях существования организма утомление двигательного аппарата при длительной работе развивается совершенно не так, как в эксперименте с изолированной мышцей. Обусловлено это не только тем, что в организме мышца непрерывно снабжается кровью, и, следовательно, получает с ней необходимые питательные вещества и освобождается от продуктов обмена. Главное отличие состоит в том, что в организме возбуждающие импульсы приходят к мышце с нерва. Нервно-мышечный синапс утомляется значительно раньше, чем мышечное волокно, в связи с быстрым истощением запасов наработанного медиатора. Это вызывает блокаду передачи возбуждений с нерва на мышцу, что предохраняет мышцу от истощения, вызываемого длительной работой. В целостном же организме еще раньше утомляются при работе нервные центры, нервно-нервные контакты. Роль нервной системы в утомлении целостного организма доказывается исследованиями утомления в гипнозе гиря-корзина , установлением влияния на утомления "активного отдыха", роли симпатической нервной системы феномен Орбели-Гинецинского и др..

Для изучения мышечного утомления у человека пользуются эргографией. Форма кривой утомления и величина произведенной работы чрезвычайно вариирует у разных лиц и даже у одного и того же исследуемого при различных условиях. Рабочая гипертрофия мышц и атрофия от бездействия. Систематическая интенсивная работа мышцы приводит к увеличению массы мышечной ткани. Это явление названо рабочей гипертрофией мышцы. В ее основе лежит увеличение массы протоплазмы мышечных волокон и числа содержащихся в них миофибрилл, что приводит к увеличению диаметра каждого волокна. При этом в мышце происходит активация синтеза нуклеиновых кислот и белков и увеличивается содержание АТФ и КФЫ, а также гликогена. В результате сила и скорость сокращения гипертрофированной мышцы возрастают. Увеличению числа миофибрилл при гипертрофии способствует преимущественно статическая работа, требующая большого напряжения силовая нагрузка.

Даже кратковременные упражнения, проводимые ежедневно в условиях изометрического режима, достаточны для того, чтобы произошло увеличение числа миофибрилл. Динамическая мышечная работа, производимая без особых усилий, не приводит к гипертрофии мышцы, но может оказывать влияние на весь организм в целом, повышая устойчивость его к неблагоприятным факторам. Противоположным рабочей гипертрофии явлением служит атрофия мышц от бездействия. Она развивается во всех случаях, когда мышцы почему-то утрачивают способность совершать свою нормальную работу. Это происходит, например, при длительном обездвиживании конечности в гипсовой повязке, долгом пребывании больного в постели, перерезке сухожилия и т. При атрофии мышц диаметр мышечных волокон и содержание в них сократительных белков, гликогена, АТФ и других важных для сократительной деятельности веществ резко уменьшается. При возобновлении нормальной работы мышцы атрофия постепенно исчезает. Особый вид мышечной атрофии наблюдается при денервации мышцы, то есть после перерезки ее двигательного нерва. Гладкие мышцы Функции гладких мышц в разных органах.

Гладкая мускулатура в организме находится во внутренних органах, сосудах, коже. Гладкие мышцы способны осуществлять относительно медленные движения и длительные тонические сокращения. Относительно медленные, часто ритмические сокращения гладких мышц стенок полых органов желудка, кишок, протоков пищеварительных желез, мочеточников, мочевого пузыря, желчного пузыря и т. Длительные тонические сокращения гладких мышц особенно резко выражены в сфинктерах полых органов; их сокращение препятствует выходу содержимого. В состоянии постоянного тонического сокращения находятся также гладкие мышцы стенок кровеносных сосудов, особенно артерий и артериол. Тонус мышечного слоя стенок артерий регулирует величину их просвета и тем самым уровень кровяного давления и кровоснабжения органов. Тонус и двигательная функция гладких мышц регулируется импульсами, поступающими по вегетативным нервам, гуморальными влияниями. Физиологические особенности гладких мышц. Важным свойством гладкой мышцы является ее большая пластичность, то есть способность сохранять приданную растяжением длину без изменения напряжения.

Гормоны гипоталамуса поступают к гипофизу по кровеносному руслу и там воздействуют на его функции. Статины и либерины не всегда действуют строго избирательно. Так, соматостатин может подавлять выработку не только соматотропина, но также тиротропного гормона, инсулина и пролактина. Нервная регуляция работы надпочечников Надпочечники — парные железы, которые у человека расположены в области верхнего полюса почек.

В их строении выделяют две составляющих: корковое и мозговое вещество. Кора выполняют эндокринную функцию и вырабатывает гормоны в кровь, а мозговой слой представляет собой промежуточное звено между нервной и эндокринной системами. Одна из функций мозгового вещества надпочечников — выработка катехоламинов. Это группа биологически активных соединений, которая включает адреналин и норадреналин.

Они максимально активируются в стрессовых ситуациях, когда необходимо срочно привести организм в тонус, и запускают ряд изменений: ускорение сердцебиения;.

К железам нервные импульсы поступают по нервным нитям. Например: мы видим опасность, мозг анализирует, что это действительно опасность и отправляет импульс в надпочечники, где выделяется адреналин. Знаешь ответ?

Поэтому этот нейрон называют также эффекторным. Рецепторы возбуждаются со стороны трех чувствительных поверхностей, или рецепторных полей, организма: 1 с наружной, кожной, поверхности тела экстероцептивное поле при посредстве связанных с ней генетически органов чувств, получающих раздражение из внешней среды; 2 с внутренней поверхности тела интероцептивное поле , принимающей раздражения главным образом со стороны химических веществ, поступающих в полости внутренностей, и 3 из толщи стенок собственно тела проприоцептивное поле , в которых заложены кости, мышцы и другие органы, производящие раздражения, воспринимаемые специальными рецепторами. Рецепторы от названных полей связаны с афферентными нейронами, которые достигают центра и там переключаются при посредстве подчас весьма сложной системы кондукторов на различные эфферентные проводники; последние, соединяясь с рабочими органами, дают тот или иной эффект.

Резюме по рефлекторной дуге Деятельность нервной системы носит рефлекторный характер, а сама нервная система построена по принципу рефлекторных дуг. Рефлекс - это реакция организма на то или иное раздражение, которая происходит при участии нервной системы. В ней нервные клетки, контактируя друг с другом при помощи синапсов, образуют цепи различной длины и сложности. Цепь нейронов, обязательно включающую первый нейрон чувствительный и последний нейрон двигательный или секреторный , называют рефлекторной дугой. В состав рефлекторной дуги входят афферентный нейрон с его чувствительными окончаниями - рецепторами, один или более вставочных нейронов, залегающих в центральной нервной системе, и эфферентный нейрон, чьи эффекторные окончания заканчиваются на рабочих органах мышцах и др. Простейшая рефлекторная дуга состоит из трех нейронов - чувствительного, вставочного и двигательного или секреторного. Тело первого нейрона афферентного находится в спинномозговом узле или чувствительном узле черепного нерва. Дендриты этих клеток направляются в составе соответствующего спинномозгового или черепного нерва на периферию, где заканчиваются рецепторным аппаратом, который воспринимает раздражение.

Нервная система. Общие сведения

К ней относятся гипоталамус, гипофиз, а также периферические железы: щитовидная, поджелудочная, половые, надпочечники. Гормоны — биологически активные вещества, которые соединяются с клетками различных органов и могут изменять их работу, ускорять или замедлять биохимические процессы в организме. Чтобы понимать, какая нервная система регулирует работу эндокринной системы, нужно отследить взаимосвязь. Она носит название «нейроэндокринная регуляция» и заключается в контроле выработки гормонов эндокринными железами. Этот процесс обеспечивается благодаря работе нескольких структур: гипоталамуса, гормонами-нейромедиаторами, а также мозговым слоем надпочечников. Роль гипоталамуса Гипоталамус — небольшой участок промежуточного мозга, который считается центром нейроэндокринной регуляции.

Он связан с другими отделами нервной системы, головным и спинным мозгом. Вместе с гипофизом он образует гипоталамо-гипофизарную систему и регулирует интенсивность выработки его гормонов. Гипоталамус получает сигналы от следующих структур: базальных ядер ганглиев — скоплений серого вещества в белом веществе головного мозга; спинного мозга; отделов головного мозга: продолговатого, среднего, таламуса, а также некоторых участков больших полушарий. Гипоталамус — это центр, который накапливает данные из всего организма, а также из внешней среды.

Нервная ткань. Нервы Теория: Нервная система контролирует, координирует и регулирует согласованную работу всех систем органов, поддержание постоянства состава его внутренней среды благодаря этому организм человека функционирует как единое целое. При участии нервной системы осуществляется связь организма с внешней средой. Нервная ткань Нервная система образована нервной тканью, которая состоит из нервных клеток — нейронов и мелких клеток спутников глиальных клеток , которых примерно в 10 раз больше, чем нейронов. Нейроны обеспечивают основные функции нервной системы: передачу, переработку и хранение информации. Нервные импульсы имеют электрическую природу и распространяются по отросткам нейронов. Клетки спутники выполняют питательную, опорную и защитную функции, способствуя росту и развитию нервных клеток. Строение нейрона Нейрон — основная структурная и функциональная единица нервной системы.

Оболочки головного мозга. Твердая оболочка головного мозга одновременно является надкостницей внутренней поверхности костей черепа. Наиболее плотное соединение этой оболочки наблюдаются в районе черепных швов. Здесь проходит большое количество кровеносных сосудов. Твердая мозговая оболочка обладает болевой чувствительностью. Паутинная оболочка головного мозга расположена после твердой мозговой оболочки и имеет вид паутины. Образована соединительной тканью, клетки которой синтезируют внеклеточное вещество. Функция паутинной оболочки состоит в поддержании биохимического состава и регуляции давления ликвора - спинномозговой жидкости, которая циркулирует в паутинном пространстве. Мягкая сосудистая оболочка сращена с тканью мозга, состоит из рыхлой соединительной ткани, в толще которой находятся кровеносные сосуды, обеспечивающие питание мозга. Она принимает участие в образовании сосудистых сплетений желудочков головного мозга, продуцирующих спинномозговую жидкость ликвор. Эта информация доступна зарегистрированным пользователям Кровеносные сосуды, проникающие в ткань головного мозга, находятся в толще мягкой сосудистой оболочки.

Синапс Спинномозговуюмою жидкость Серое вещество Нервный центр Белое вещество? На этой странице сайта размещен вопрос Нервные импульсы поступают непосредственно к железам по1 аксонам двигательных нейронов2 аксонам вставочных нейронов3 серому веществу спинного мозга4 белому веществу спинного мозга? Уровень сложности вопроса соответствует знаниям учеников 5 - 9 классов. Здесь же находятся ответы по заданному поиску, которые вы найдете с помощью автоматической системы. Одновременно с ответом на ваш вопрос показаны другие, похожие варианты по заданной теме. На этой странице можно обсудить все варианты ответов с другими пользователями сайта и получить от них наиболее полную подсказку. Последние ответы Iamintelligent 28 апр.

Информация

Функции нервной клетки. Распространение нервного импульса по аксону. Нервные импульсы от тела. Нервные импульсы к телу нейрона идут по. Импульс нейрона. Ветвящийся отросток нейрона. Нервные импульсы передаются в мозг по нейронам.

Передача нервного импульса с нейрона. Передача нервных импульсов по волокнам нервной системы. Схема строения двигательного нейрона. Структурно-функциональной единицей нервной ткани является. Схема проведения нервного импульса. Строение рефлекторной дуги чувствительности.

Рефлекторная дуга нервной системы анатомия. Рефлекторная дуга строение и функции. Рефлекторная дуга периферической системы. Рефлекс вставочные Нейроны. Функции вставочного нейрона рефлекторной дуги. Нейрон, проводящий нервный Импульс от рецептора к ЦНС.

Вставочные Нейроны нервные импульсы. Нейрон состоит из аксона и дендритов. Строение нейрона тело Аксон дендрит. Строение нейрона. Строение нефрона Аксон дендрит. Синапс механизм синаптической передачи импульса.

Механизмы модуляции эффективности синаптической передачи. Механизм межнейронной синаптической передачи. Синапс этапы синаптической передачи. Путь нейрона по рефлекторной дуге. Последовательность нервного импульса в рефлекторной дуге. Путь передачи нервного импульса рефлекторная дуга.

Рефлекторная дуга по порядку нервного импульса. Передача нервного импульса. Рефлекторная дуга рвотного рефлекса схема. Структура трехнейронной рефлекторной дуги.. Схема трехнейронной рефлекторной дуги соматического рефлекса. Схема трехнейронной рефлекторной дуги двигательного рефлекса.

Аксонный холмик строение. Проведение нервного импульса по нейрону. Нервно мышечное сокращение. Передают нервные импульсы в ЦНС. Проведение нервного импульса в ЦНС. Рефлекторная функция спинного мозга схема.

Функции рефлекторной дуги спинного мозга. Рефлекторная функция спинного мозга рефлекс. Рефлекторная дуга гемодинамического рефлекса. Схема Рецептор чувствительный Нейрон. Схема спинного мозга чувствительный Нейрон. Рефлекс ЕГЭ рефлекторная дуга.

Строение рефлекторной дуги схема. Схема отделов рефлекторной дуги анализаторов. Вегетативная нервная система, дуга вегетативного рефлекса 8 класс. Периферический двигательный Нейрон расположен. Анатомия центрального двигательного нейрона. Функции центрального и периферического двигательных нейронов.

Нейроны головного мозга строение. Регулирует все процессы в организме. Направление движения нервного импульса. Процессы нервной ткани. Нервных процессов в организме. Строение спинного мозга Нейроны.

Нейроны спинного мозга схема. Двигательный Нейрон в заднем корешке спинного мозга. Спинной мозг строение рефлекторная. Коленный рефлекс физиология.

Продолговатый мозг нервная система. Нейрон структурно-функциональная единица нервной системы. Структурно-функциональная характеристика нейронов.

Функциональное строение нервной системы. Структурная организация нейрона. Передача нервного импульса в ЦНС. Путь передачи нервного импульса в центральную нервную систему. Сигналы нейронов. Нервная система строение нейрона. Функции нейрона схема.

Структурно-функциональная единица нейрона. Структурные элементы и Нейроны таблица. Возбуждение нервной клетки. Проведение возбуждения в нервной клетке. Строение чувствительного нейрона. Двигательная нервная клетка. В нейроне различают.

Вставочный Нейрон. Роль нейронов. Нейроны различаются по форме. Синапс место контакта между двумя нейронами. Нейрон передача импульса. Передача импульса между нейронами. Передача импульса между нервными клетками.

Передача импульса в нервной системе. Передача нервного импульса от нейрона к нейрону. Функции нервной клетки. Распространение нервного импульса по аксону. Нервные импульсы от тела. Нервные импульсы к телу нейрона идут по. Импульс нейрона.

Ветвящийся отросток нейрона. Нервные импульсы передаются в мозг по нейронам. Передача нервного импульса с нейрона. Передача нервных импульсов по волокнам нервной системы. Схема строения двигательного нейрона. Структурно-функциональной единицей нервной ткани является. Схема проведения нервного импульса.

Строение рефлекторной дуги чувствительности. Рефлекторная дуга нервной системы анатомия. Рефлекторная дуга строение и функции. Рефлекторная дуга периферической системы. Рефлекс вставочные Нейроны. Функции вставочного нейрона рефлекторной дуги. Нейрон, проводящий нервный Импульс от рецептора к ЦНС.

Вставочные Нейроны нервные импульсы. Нейрон состоит из аксона и дендритов. Строение нейрона тело Аксон дендрит. Строение нейрона. Строение нефрона Аксон дендрит. Синапс механизм синаптической передачи импульса. Механизмы модуляции эффективности синаптической передачи.

Механизм межнейронной синаптической передачи. Синапс этапы синаптической передачи. Путь нейрона по рефлекторной дуге. Последовательность нервного импульса в рефлекторной дуге. Путь передачи нервного импульса рефлекторная дуга. Рефлекторная дуга по порядку нервного импульса. Передача нервного импульса.

Рефлекторная дуга рвотного рефлекса схема. Структура трехнейронной рефлекторной дуги.. Схема трехнейронной рефлекторной дуги соматического рефлекса. Схема трехнейронной рефлекторной дуги двигательного рефлекса. Аксонный холмик строение. Проведение нервного импульса по нейрону.

Первая во много раз короче второй и носит название начального теплообразования. Она начинается с момента возбуждения мышцы и продолжается в течение всего сокращения, включая и фазу расслабления. Вторая фаза теплообразования происходит в течение нескольких минут после расслабления, и носит название запаздывающего , или восстановительного теплообразования. В свою очередь начальное теплообразование может быть разделено на несколько частей - тепло активации, тепло укорочения, тепло расслабления.

Тепло, образующееся в мышцах, поддерживает температуру тканей на уровне, обеспечивающем активное протекание физических и химических процессов в организме. Виды сокращений. В зависимости от условий, в которых происходит сокраще- ние, различают два его типа - изотоническое и изометрическое. Изотоническим называется такое сокращение мышцы, при котором ее волокна укорачиваются, но напряжение остается прежним. Примером является укорочение без нагрузки. Изометрическим называется такое сокращение, при котором мышца укорачиваться не может когда ее концы неподвижно закреплены. В этом случае длина мышечных волокон остается неизменной, но напряжение их растет подъем непосильного груза. Естественные сокращения мышц в организме никогда не бывают чисто изотоническими или изометрическими. Одиночное сокращение. Раздражение мышцы или иннервирующего ее двигательного нерва одиночным стимулом вызывает одиночное сокращение мышцы.

В нем различают две основные фазы: фазу сокращения и фазу расслабления. Сокращение мышечного волокна начинается уже во время восходящей ветви ПД. Длительность сокращения в каждой точке мышечного волокна в десятки раз превышает продолжительность ПД. Поэтому наступает момент, когда ПД прошел вдоль всего волокна и закончился, волна же сокращения охватила все волокно и оно продолжает быть укороченным. Это соответствует моменту максимального укорочения или напряжения мышечного волокна. Сокращение каждого отдельного мышечного волокна при одиночных сокращениях подчиняется закону "все или ничего". Это означает, что сокращение, возникающее как при пороговом, так и при сверхпороговом раздражении, имеет максимальную амплитуду. Величина же одиночного сокращения всей мышцы зависит от силы раздражения. При пороговом раздражении сокращение ее едва заметно, с увеличением же силы раздражения оно нарастает, пока не достигнет известной высоты, после чего уже остается неизменной максимальное сокращение. Это объясняется тем, что возбудимость отдельных мышечных волокон неодинакова, и поэтому только часть их возбуждается при слабом раздражении.

При максимальном сокращении они возбуждены все. Скорость проведения волны сокращения мышцы совпадает со скоростью распространения ПД. Суммация сокращений и тетанус. Если в эксперименте на отдельное мышечное волокно или на всю мышцу действуют два быстро следующих друг за другом сильных одиночных раздражения, то возникающее сокращение будет иметь большую амплитуду, чем максимальное одиночное сокращение. Сократительные эффекты, вызванные первым и вторым раздражением, как бы складываются. Это явление носит название суммации сокращений. Для возникновения суммации необходимо, чтобы интервал между раздражениями имел определенную длительность - он должен быть длиннее рефрактерного периода, но короче всей длительности одиночного сокращения, чтобы второе раздражение подействовало на мышцу раньше, чем она успеет расслабиться. При этом возможны два случая. Если второе раздражение поступает, когда мышца уже начала расслабляться, на миографической кривой вершина второго сокращения будет отделяться от первого западением. Если же второе раздражение действует, когда первое сокращение еще не дошло до своей вершины, то второе сокращение как бы сливается с первым, образуя вместе с ним единую суммированную вершину.

Как при полной, так и при неполной суммации ПД не суммируются. Такое суммированное сокращение в ответ на ритмические раздражения называются тетанусом. В зависимости от частоты раздражения он бывает зубчатый и гладкий. После прекращения тетанического раздражения волокна вначале расслабляются не полностью, и их исходная длина восстанавливается лишь по истечении некоторого времени. Это явление называется посттетанической , или остаточной контрактурой. Она связана с тем. Если после достижения гладкого тетануса еще больше увеличивать частоту раздражения, то мышца при какой-то частоте начинает вдруг расслабляться. Это явление называется пессимумом. Он наступает тогда, когда каждый следующий импульс попадает в рефрактерность от предыдущего. Моторные единицы.

Мы рассмотрели общую схему явлений, лежащих в основе тетанического сокращения. Для того, чтобы более подробно познакомиться с тем, как этот процесс совершается в условиях естественной деятельности организма, необходимо остановиться на некоторых особенностях иннервации скелетной мышцы двигательным нервом. Каждое моторное нервное волокно, являющееся отростком двигательной клетки передних рогов спинного мозга альфа-мотонейрона , в мышце ветвиться и иннервирует целую группу мышечных волокон. Такая группа называется моторной единицей мышцы. Количество мышечных волокон, входящих в состав моторной единицы, вариирует в широких пределах, но их свойства одинаковы возбудимость, проводимость и др. Вследствие того, что скорость распространения возбуждения в нервных волокнах, иннервирующих скелетные мышцы, очень велика, мышечные волокна, составляющие моторную единицу, приходят в состояние возбуждения практически одновременно. Электрическая активность моторной единицы имеет вид частокола, в котором каждому пику соответствует суммарный потенциал действия многих одновременно возбужденных мышечных волокон. Следует сказать, что возбудимость различных скелетных мышечных волокон и состоящих из них моторных единиц значительно вариирует. Она больше в т. При этом возбудимость обоих ниже возбудимости нервных волокон, их иннервирующих.

Это зависит от того, что в мышцах разница Е0-Е к больше, и, значит, реобаза выше. ПД достигает 110-130 мв, длительность его 3-6 мсек. Максимальная частота быстрых волокон - около 500 в сек. Длительность ПД в медленных волокнах примерно в 2 раза больше, продолжительность волны сокращения - в 5 раз больше, а скорость ее проведения в 2 раза медленнее. Кроме того, быстрые волокна делятся в зависимости от скорости сокращения и лабильности на фазные и тонические. Скелетные мышцы в большинстве случаев являются смешанными: они состоят как из быстрых, так и медленных волокон. Но в пределах одной моторной единицы все волокна всегда одинаковы. Поэтому и моторные единицы делят на быстрые и медленные, фазные и тонические. Смешанный тип мышцы позволяет нервным центрам использовать одну и ту же мышцу как для осуществления быстрых, фазных движений, так и для поддержания тонического напряжения. Существуют, однако, мышцы, состоящие преимущественно из быстрых или из медленных моторных единиц.

Такие мышцы часто тоже называются быстрыми белыми и медленными красными. Длительность волны сокращения наиболее быстрой мышцы - внутренней прямой мышцы глаза - составляет всего 7,5 мсек. Функциональное значение указанных различий становится очевидным при рассмотрении их ответов на ритмические стимулы. Для получения гладкого тетануса медленной мышцы достаточно раздражать ее с частотой 13 стимулов в сек. В тонических моторных единицах длительность сокращения на одиночный стимул может достигать 1 секунды. Суммация сокращений моторных единиц в целой мышце. В отличие от мышечных волокон в моторной единице, которые синхронно, одновременно возбуждаются в ответ на приходящий импульс, мышечные волокна различных моторных единиц в целой мышце работают асинхронно. Объясняется это тем, что разные моторные единицы иннервируются различными двигательными нейронами, которые посылают импульсы с различной частотой и разновременно. Несмотря на это суммарное сокращение мышцы в целом имеет в условиях нормальной деятельности слитный характер.

Калий преобладает в клетках нейрона над натрием и свободно выходит из наружу. Когда на клетку действует раздражитель, возбуждение вызывает возрастание проницаемости мембраны клеток нервов. Ионы получают возможность перемещаться по градиенту концентрации. После чего, поток ионов натрия становится выше, чем калия. Это действие обуславливает потенциал действия. Нервы проводят через себя электрический ток. Ток проходит через тело нейрона к периферическому концу. Так происходит изменение проницаемости. Центральная нервная система Состоит из головного и спинного мозга. Является ведущим центром в организме человека, отвечающим за мышление, координацию движений, психическое состояние и взаимодействие с окружающим миром. Спинной мозг расположен в позвоночном столбе, имеет вид длинного тяжа. Он разделен на две симметричные половины: переднюю и заднюю борозды. По центру проходит спинномозговой канал, заполненный жидкостью — ликвором.

Остались вопросы?

На этой странице сайта размещен вопрос Нервные импульсы поступают непосредственно к железам по1 аксонам двигательных нейронов2 аксонам вставочных нейронов3 серому веществу спинного мозга4 белому веществу спинного мозга? Уровень сложности вопроса соответствует знаниям учеников 5 - 9 классов. Здесь же находятся ответы по заданному поиску, которые вы найдете с помощью автоматической системы. Одновременно с ответом на ваш вопрос показаны другие, похожие варианты по заданной теме. На этой странице можно обсудить все варианты ответов с другими пользователями сайта и получить от них наиболее полную подсказку. Последние ответы Iamintelligent 28 апр. Октябрина2 28 апр.

У большинства нейронов длинный отросток имеет оболочку из особого жироподобного вещества миелина. Миелиновая оболочка способствует изоляции нервного волокна. Нервный импульс проводится по такому волокну быстрее, чем по лишенному миелина. По наличию или отсутствию оболочки все отростки делятся на миелинизированные и немиелинизированные. Строение нейрона Миелиновая оболочка имеет белый цвет, что позволило разделить вещество нервной системы на белое и серое.

Тела нейронов и их короткие отростки образуют серое вещество мозга, а волокна — белое вещество. Функциональное различие отростков нейронов связано с проведением нервного импульса. Отросток, по которому импульс идет от тела нейрона, называется аксоном. У большинства нервных клеток аксон — это длинный отросток. Отросток нейрона, по которому импульс идет к телу клетки, называется дендрит.

Нейрон может иметь один или несколько дендритов. Дендриты, отходя от тела клетки, постепенно ветвятся под острым углом. Синапсы Передача сигнала от клетки к клетки осуществляется в особых образованиях — синапсах. Такое название им дал в 1897 г. Чарлз Шеррингтон.

В них конечная веточка аксона утолщена и содержит пузырьки с раздражающим веществом — медиатором. Когда по аксону нервные импульсы дойдут до синапса, пузырьки лопаются и жидкость, содержащая медиаторы, попадает в синаптическую щель. В зависимости от ее состава клетка, регулируемая нейроном, может включиться в работу, то есть возбудиться, или выйти из работы затормозиться. Нейроны различаются по своим функциям и подразделяются на чувствительные, вставочные и двигательные. Чувствительные нейроны — это нервные клетки, воспринимающие раздражения из внешней или внутренней среды организма.

А что такое нервный узел? И в чём его отличие от нервного сплетения? Запомним ещё парочку нужных определений: Нервный узел ганглий — это скопление нервных клеток, которое состоит из тел нейронов, а также из дендритов, аксонов и глиальных клеток. Ганглии выполняют роль связующего звена между разными структурами нервной системы. Нервное сплетение — это сетчатое скопление нервных волокон, которые связывают центральные отделы нервной системы с органами, мышцами и кожей. Рефлекс и рефлекторная дуга Помнишь, что является основной формой деятельности нервной системы? Если забыл, подскажу: в основе нашей нервной деятельности лежит рефлекс.

На нём мы остановимся чуть подробнее. Рефлекс — это ответная реакция организма на действие внутреннего или внешнего раздражителя. Любой рефлекс осуществляется на базе рефлекторной дуги — совокупности нервных элементов, необходимых для проведения нервного импульса. Иными словами, рефлекторная дуга — это путь, по которому проходит нервный импульс при осуществлении рефлекса. Самый простой пример рефлекторной дуги — дуга коленного рефлекса. Вспомни стандартную процедуру в кабинете невролога: доктор ударяет чуть ниже колена специальным молоточком, и нога резко дёргается «сама», без твоего сознательного участия. Как это происходит?

Молоточек попадает по сухожилию, расположенному под твоей коленной чашечкой — там находится особый рецептор, который реагирует на внешнее раздражение и трансформирует энергию в нервный импульс. Затем этот импульс передаётся по аксону чувствительного нерва в спинной мозг, где попадает к находящемуся в нём двигательному нейрону. Этот нейрон непосредственно связан с мышцей, движение которой ты и наблюдаешь после удара молоточком по сухожилию.

Регуляция деятельности желез кишечника. За счет нервных воздействий регулируется образование ферментов. В условиях денервации тонкого кишечника наблюдается «разлад» в работе секреторной клетки: сока выделяется много, но он беден ферментами. Кора большого мозга принимает участие в регуляции секреторной активности тонкого кишечника. Стимулирует секрецию кишечных желез гормон энтерокринин.

Этот гормон образуется и выделяется при соприкосновении содержимого кишечника со слизистой оболочкой. Энтерокринин стимулирует отделение главным образом жидкой части сока. Моторная функция тонкого кишечника и ее регуляция. В тонком кишечнике различают перистальтические и неперистальтические движения. Перистальтические сокращения обеспечивают продвижение пищевой кашицы по кишечнику. Этот вид двигательной активности кишечника обусловлен координированным сокращением продольного и циркулярного слоев мышц. При этом происходит сокращение кольцевых мышц верхнего отрезка кишки и выдавливание пищевой кашицы в одновременно расширяющийся за счет сокращения продольных мышц нижний участок. Неперистальтические движения тонкого кишечника представлены сегментирующими сокращениями.

К ним относят ритмическую сегментацию и маятникообразные движения. Ритмические сокращения делят пищевую кашицу на отдельные сегменты, что способствует ее лучшему растиранию и перемешиванию с пищеварительными соками. Маятникообразные движения обусловлены сокращением круговых и продольных мышц кишечника. Маятникообразные движения способствуют тщательному перемешиванию химуса с пищеварительными соками. В регуляции моторной активности тонкого кишечника участвуют нервные и гуморальные механизмы, объединенные в единую регуляторную систему, за счет деятельности которой усиливается или ослабляется моторная функция тонкого кишечника. Нервный механизм. Моторная функция кишечника регулируется интрамуральной и экстрамуральной нервной системой. К интрамуральной нервной системе относят мышечно-кишечное ауэрбаховское , глубокое межмышечное и подслизистое мейсснеровское сплетения.

Они обеспечивают возникновение местных рефлекторных реакций, которые возникают при раздражении слизистой оболочки кишечника его содержимым. Экстрамуральная нервная система кишечника представлена блуждающими и чревными нервами. Блуждающие нервы при их возбуждении стимулируют моторную функцию кишечника, чревные тормозят ее. Моторная функция тонкого кишечника стимулируется рефлекторно при возбуждении рецепторов различных отделов желудочно-кишечного тракта. Рефлекторно стимулирует моторную функцию тонкого кишечника акт еды. Гуморальная регуляция моторной функции тонкого кишечника. Стимулирующее влияние на моторную функцию кишечника оказывают биологически активные вещества серотонин, гистамин, брадикинин и др. Тормозят двигательную активность кишечника гормоны мозгового слоя надпочечников — адреналин и норадреналин.

Вследствие этого такие эмоциональные состояния организма, как страх, испуг, гнев, злость, ярость и т. Существенное значение в регуляции моторной функции кишечника имеют физико-химические свойства пищи. Грубая пища, содержащая большое количество клетчатки, овощи стимулируют двигательную активность кишечника. Составные части пищеварительных соков — хлористоводородная кислота, желчные кислоты — также усиливают моторную функцию кишечника. При отсутствии пищеварения илеоцекальный сфинктер закрыт. В результате пищевая кашица небольшими порциями поступает в слепую кишку. Основной функцией проксимальной части толстых кишок является всасывание воды. Роль дистального отдела толстого кишечника состоит в формировании каловых масс и удалении их из организма.

Всасывание питательных веществ в толстом кишечнике незначительно. Существенная роль в процессе пищеварения принадлежит микрофлоре — кишечной палочке и бактериям молочнокислого брожения. Бактерии в процессе своей жизнедеятельности выполняют полезные для организма функции. Бактерии молочнокислого брожения образуют молочную кислоту, которая обладает антисептическим свойством. Бактерии синтезируют витамины группы В, витамин К, пантотеновую и амидникотиновую кислоты, лактофлавин. Микроорганизмы подавляют размножение патогенных микробов. Отрицательная роль микроорганизмов кишечника состоит в том, что они образуют эндотоксины, вызывают брожение и гнилостные процессы с образованием ядовитых веществ индол, скатол, фенол и в определенных случаях могут стать причиной заболеваний. Моторная функция толстого кишечника.

Моторная функция толстого кишечника обеспечивает накапливание каловых масс и периодическое их удаление из организма. Кроме того, моторная активность кишечника способствует всасыванию воды. В толстом кишечнике наблюдаются перистальтические, антиперистальтические и маятникообразные движения. Все они осуществляются медленно. Обеспечивают перемешивание, разминание содержимого, способствуют его сгущению и всасыванию воды. Толстому кишечнику присущ особый вид сокращения, который получил название масс-сокращение. Возникает масс-перистальтика редко, до 3—4 раз в сутки. Сокращения захватывают большую часть толстой кишки и обеспечивают быстрое опорожнение значительных ее участков.

Регуляция моторной функции толстого кишечника. Толстый кишечник имеет интрамуральную и экстрамуральную иннервацию. Последняя представлена симпатическими нервами, которые выходят из верхнего и нижнего брыжеечных сплетений, и парасимпатическими, входящими в состав блуждающих и тазового нервов. Рефлекторные воздействия на двигательную активность толстого кишечника осуществляются во время еды, в результате возбуждения хемо- и механорецепторов желудка, двенадцатиперстной кишки и тонкого кишечника. Моторная функция толстого кишечника определяется и характером принимаемой пищи. Чем больше в пище клетчатки, тем выраженнее моторная активность толстого кишечника. Формированию кала способствуют комочки слизи кишечного сока, которые склеивают непереваренные частицы пищи Дефекация — сложнорефлекторный акт опорожнения дистального отдела толстой кишки через задний проход.

Человек и его здоровье (стр.51-75)

Он неподвластен нашей воле и действует независимо от нее, автономно: центры вегетативной нервной системы посылают нервные импульсы в нервные узлы, а нейроны узла регулируют работу соответствующих органов. При включении человека в физическую работу два отдела работают взаимосвязанно. Высшим центром соматической нервной системы является кора больших полушарий. Сюда стекается вся информация от органов чувств к внутренней среде организма. Здесь изыскиваются способы удовлетворения потребностей, за исполнение которых отвечает автономный отдел нервной системы посредством регуляции обмена веществ, усиления или ослабления действия внутренних органов человека. Вопрос Расскажите о строении и функциях симпатического и парасимпатического подотделов автономного отдела нервной системы.

Ответ: В автономном отделе нервной системы имеются два подотдела: симпатический и парасимпатический. Нервные центры симпатического подотдела располагаются в сером веществе спинного мозга, от его шейных до крестцовых сегментов. Нервные центры парасимпатического подотдела находятся в головном мозге и крестцовых сегментах спинного мозга. К парасимпатическому подотделу относится парный блуждающий нерв с центрами в продолговатом мозге. Симпатический подотдел активизируется, когда организму предстоит напряженная работа, парасимпатический — когда происходит переход от работы к отдыху.

Не случайно симпатический подотдел называют системой аварийной ситуации, а парасимпатический подотдел — системой отбоя. Вопрос Как устроен спинной мозг? Какие функции он выполняет? Ответ: спинной мозг имеет вид длинного шнура, заостренного внизу. На уровне большого затылочного отверстия он переходит в головной мозг, а на уровне первого — второго поясничного позвонка заканчивается.

Передняя щель и задняя борозда делят спинной мозг на две симметричные половины правую и левую. В спинном мозге различают серое и белое вещество. Серое вещество состоит из тел нейронов и дендритов, белое — из их длинных отростков, образующих нервные волокна. В центре спинного мозга проходит центральный канал, также заполненный спинно — мозговой жидкостью. Серое вещество слева и справа от канала образует серые столбы, соединенные узкой перемычкой.

Белое вещество расположено снаружи, вокруг серого. От спинного мозга отходит 31 пара нервов, связывающих его с органами либо непосредственно, либо через нервные узлы. В спинном мозге находятся центры врожденных безусловных рефлексов. Он регулирует движения туловища и конечностей, работу внутренних органов: сердца, почек, легких, органов пищеварения и др. Помимо рефлекторной спинной мозг выполняет и проводящую функцию.

По его нервным путям проходят нервные импульсы в головной мозг и из головного мозга.

Цифры в ответе могут повторяться. Ответ 213 2. Экспериментатор использовал три группы лабораторных крыс для изучения нарушений углеводного обмена. Первой группе животных была проведена операция по тотальному удалению поджелудочной железы; второй группе — операция по резекции поджелудочной железы удалению части органа ; третьей группе — операция по перевязке протоков поджелудочной железы. Крыс кормили углеводистой пищей и определяли концентрацию глюкозы в крови. Как изменилась концентрация глюкозы в крови крыс А первой группы, Б второй группы, В третьей группы.

С возрастом происходит снижение уровня тиреоидных гормонов в крови и повышение содержания ТТГ. На секрецию ТТГ влияют — стероидные гомоны, соматостатин и соматотропный гормон, гонадотропины, различные факторы роста. Его уровень обычно ниже у мужчин, а у женщин он зависит от фазы менструального цикла. Физиологические эффекты сводятся к стимуляции окислительно-восстановительных процессов, увеличению потребления О2 тканями. Тиреоидные гормоны участвуют во всех видах обмена — водно-солевом, белковом катаболическое действие , жировом, углеводном и энергетическом. Стимулируют синтез белка, усиливают процессы всасывания глюкозы в кишечнике и утилизации их в тканях, активизируют распад гликогена и снижают его содержание в печени. Тиреокальцитонин с паратгормоном регулирует обмен кальция и фосфора в организме. Изменение продукции тиреогормонов связано с недостатком в пище йода, что ведёт к разрастанию ткани ЩЖ и появлению эндокринного зоба. Паращитовидные железы. Паращитовидные железы парные образования, расположенные в области шеи позади щитовидной железы. Их количество от 2 до 6, две верхние и две нижние. Располагаются в рыхлой соединительной клетчатке, отделяющей внутреннюю и наружную капсулы щитовидной железы. Верхняя пара примыкает сзади к долям щитовидной железы, вблизи их верхушки на уровне дуги перстневидного хряща. Нижняя пара находится между трахеей и долями щитовидной железы, вблизи их оснований. Анатомическое строение. Паращитовидные железы - небольшие образования величиной с рисовое зернышко, залегающие позади долей щитовидной железы, имеют округлую или овальную форму. Размеры: длина — 4-5 мм, толщина — 2-3 мм, масса - 0,2-0,5 гр. Нижние паращитовидные железы крупнее верхних. Паращитовидные железы отличаются от щитовидной железы более светлой окраской, у детей бледно-розоватые, у взрослых - желто-коричневые и более плотной консистенцией. Паращитовидные железы имеют тонкую соединительнотканную капсулу, от которой вглубь капсулы отходят перегородки, делящие ткань железы на группы клеток, однако четкого разграничения на дольки нет. Паращитовидные и щитовидная железы схема : А. Расположение паращитовидных желез на задней поверхности щитовидной железы: 1 - щитовидная железа; 2 - щитовидный хрящ; 3- верхняя паращитовидная железа; 4 - нижняя паращитовидная железа; 5- трахея. Микроскопическое строение паращитовидной железы, сагиттальный разрез: 6 - фолликулы щитовидной железы; 7 - паращитовидная железа; 8 - оксифильные клетки; 9- главные клетки; 10 -капилляры; 11 —капсула. Гистологическое строение. Паращитовидные железы на разрезе представлена фолликулами, но содержащийся в их просвете коллоид беден йодом. Паренхима железы состоит из плотной массы эпителиальных клеток. Среди главных клеток, подразделяющихся на светлые и темные, наиболее активными в функциональном отношении являются светлые клетки. Оба вида клеток - одни и те же клетки на разных этапах развития. В 1926 г. Паратгормон регулирует уровень кальция и фосфора в крови. Кальций влияет на проницаемость клеточных мембран, возбудимость, свертываемость крови и другие процессы. Важен и фосфор, входящий в состав многих ферментов, фосфолипидов, нуклеопротеинов, участвующих в поддержании кислотно-щелочного равновесия и обмена веществ. Органами-мишенями для паратгормона являются кости, почки и тонкая кишка. Действие паратгормона на кости: вызывает увеличение количества остеокластов и повышение их метаболической активности; стимулирует метаболическую активность остеоцитов; подавляет образование костной ткани остеобластами. Действие паратгормона на почки: повышает реабсорбцию кальция и уменьшает реабсорбцию фосфатов в извитых канальцах. Действие паратгормона на кишечник: повышает всасывание кальция. Аномалии, гипо- и гиперфункция. В результате дефицита паратгормона — гипопаратиреозе, возникает судорожное сокращение скелетной мускулатуры, причиной которой является снижение уровня кальция в крови. При гипопаратиреозе у детей, с врожденной недостаточностью паращитовидных желез нарушается рост костей, и наблюдаются длительные судороги определенных групп мышц. Гиперпаратиреоз вызывается злокачественными опухолями паращитовидных желез. При избытке паратгормона развивается болезнь Реклинхгаузена, проявляющаяся в поражении скелета и почек, первичные изменения в костях, за счет активации остеокластов, разрушающих костную ткань с высвобождением кальция. Падение уровня кальция в крови, недостаток кальция в пищевом рационе, незлокачественная опухоль паращитовидной железы, рахит вызывает повышенную секрецию паратгормона, что повышает активность остеокластов. В результате чего, уровень кальция в крови повышается, но кости становятся хрупкими. Отмечается нарушение углеводного обмена в костях. Развивается почечная недостаточность. Больные жалуются на боли в костях, слабость, преждевременное выпадение зубов, резкое похудание. Парная железа, расположенная в жировом околопочечном теле в непосредственной близости к верхнему полюсу почки. Наружное строение. Правый и левый надпочечники отличаются по форме: правый сравнивают с трехгранной пирамидой, левый — с полумесяцем. У каждого из надпочечников различают три поверхности: переднюю, заднюю и почечную. Последняя у правого надпочечника соприкасается с верхним полюсом правой почки, а у левого — с медиальным краем левой почки от ее верхнего полюса до ворот. Надпочечники имеют желтый цвет, их поверхности слегка бугристы. Размеры надпочечника: длина — 5 см, ширина — 3—4 см, толщина около 1 см. Снаружи каждый надпочечник покрыт толстой фиброзной капсулой, соединенной многочисленными тяжами с капсулой почки. Паренхима желез состоит из коркового вещества коры и мозгового вещества. Корковое вещество прочно спаяно с фиброзной капсулой, от которой вглубь железы отходят перегородки — трабекулы. Топография надпочечников. Задние поверхности надпочечников прилежат к поясничной части диафрагмы, почечные поверхности — к почкам. Левый надпочечник передней поверхностью прилежит к кардиальной части желудка и к хвосту поджелудочной железы, а медиальным краем соприкасается с аортой. Правый надпочечник передней поверхностью прилежит к печени и к двенадцатиперстной кишке, а медиальным краем соприкасается с нижней полой веной. Оба надпочечника лежат забрюшинно; их передние поверхности частично покрыты брюшиной. Кроме брюшины надпочечники имеют общие с почкой оболочки, участвующие в их фиксации: это жировая капсула почки и почечная фасция. Внутреннее строение. Надпочечники состоят из двух самостоятельных желез внутренней секреции — коры и мозгового вещества, объединенных в единый орган. Кора и мозговое вещество имеют разное происхождение, разный клеточный состав и разные функции. Корковое вещество надпочечника делят на три зоны, связанные с синтезом определенных гормонов. Наиболее поверхностный и тонкий слой коры выделяется как клубочковая зона. Средний слой называется пучковой зоной. Внутренний слой, примыкающий к мозговому веществу, образует сетчатую зону. Мозговое вещество, расположенное в надпочечнике центрально, состоит из хромаффинных клеток. Клетки мозгового вещества секретируют два родственных гормона — адреналин и норадреналин, которые объединяют под названием катехоламинов. Возрастные особенности. Толщина и структура надпочечника изменяется с возрастом. У новорожденного кора надпочечника состоит из двух частей: из зародышевой коры и тонкого слоя истинной коры. После рождения надпочечники уменьшаются. Рост надпочечников ускоряется в период полового созревания. К старости развиваются атрофические процессы. Строение, функции гормонов. Мозговой слой надпочечника вырабатывает адреналин и норадреналин. Секреция адреналина осуществляется светло-окрашиваемыми клетками, а норадреналина — темно-окрашиваемыми клетками. Человек, у которого норадреналина продуцируется мало, ведет себя в экстренных ситуациях подобно кролику — у него сильно выражено чувство страха, а человек, у которого продукция норадреналина выше, ведет себя как лев теория «кролика и льва». Метаболизм катехоламинов происходит с помощью ферментов. Выделяемые в кровь адреналин и норадреналин, разрушаются быстро — время полужизни 30 секунд. У адреналина и норадреналина обнаружены физиологические эффекты, как у симпатической нервной системы: активация деятельности сердца, расслабление гладких мышц бронхов и т. Катехоламины принимают участие в активации продукции тепла, в регуляции секреции многих гормонов. За счет взаимодействия адреналина с бета-адренорецепторами повышается продукция глюкагона, ренина, гастрина, паратгормона, кальцитонина, инсулина, тиреоидных гормонов. При взаимодействии катехоламинов с бета-адренорецепторами угнетается выработка инсулина. Во всех этих зонах продуцируются стероидные гормоны, источником для которых служит холестерин. В клубочковой зоне продуцируются минералокортикоиды, в пучковой — глюкокортикоиды, а в сетчатой — андрогены и эстрогены, т. К группе минералокортикоидов относятся: альдостерон, дезоксикортикостерон, 18-оксикортнкостерон, 18-оксидезоксикортикостерон. Основной представитель минералокортикоидов — альдостерон. Механизм действия альдостерона связан с активацией синтеза белка, участвующего в реабсорбции ионов натрия. Место действия клетки-мишени — это эпителий дистальных канальцев почки, в которых за счет взаимодействия альдостерона с рецепторами повышается продукция мРНК и рРНК и активируется синтез белка — переносчика натрия. В результате - почечный эпителий усиливает процесс обратного всасывания натрия из первичной мочи в интерстициальную ткань, а оттуда — в кровь. Механизм активного транспорта натрия из первичной мочи в интерстиций сопряжен с противоположным процессом — удалением ионов калия из крови в конечную мочу. Альдостерон является натрийсберегающим, а также калийуретическим гормоном. За счет задержки в организме ионов натрия и воды альдостерон способствует повышению уровня АД. Альдостерон влияет на процессы реабсорбции натрия в слюнных железах. При обильном потоотделении альдостерон способствует сохранению натрия в организме, препятствует его потере не только с мочой, но и с потом. Калий же, с потом удаляется при действии альдостерона. В сетчатой зоне надпочечника секретируются в небольшом количестве мужские половые гормоны, близкие по строению к гормонам — андрогенам, а также эстрогены и прогестерон. Наиболее сильный физиологический эффект принадлежит кортизолу. Гормоны вызывают активацию глюконеогенеза — образование глюкозы из аминокислот и жирных кислот. Одновременно в других органах и тканях, в скелетных мышцах глюкокортикоиды тормозят синтез белков, чтобы создать депо аминокислот, необходимых для глюконеогенеза. Главный эффект глюкокортикоидов — мобилизация энергетических ресурсов организма. Это свойство используется для снятия воспалительных реакций - после проведения операции на глазу по поводу катаракты больному рекомендуется ежедневно вводить глазные капли, содержащие глюкокортикоиды кортизон, гидрокортизон. Под влиянием глюкокортикоидов снижается продукция антител, уменьшается активность Т-киллеров, снижается интенсивность иммунологического надзора, снижается гиперчувствительность и сенсибилизация организма. Все это позволяет рассматривать глюкокортикоиды как активные иммунодепрессанты. Это свойство глюкокортикоидов широко используется в клинической практике для купирования аутоиммунных процессов, для снижения иммунной защиты организма хозяина. Это свойство глюкокортикоидов лежит в основе язвы желудка и 12перстной кишки, нарушение микроциркуляции в сосудах миокарда и как следствие — развитие аритмий, нарушение физиологического состояния кожных покровов — экземы, псориаз. Эти явления наблюдаются в условиях повышенного содержания эндогенных глюкокортикоидов или в условиях длительного введения глюкокортикоидов с лечебной целью. При высоких концентрациях глюкокортикоиды вызывают задержку натрия и воды в организме. В скелетных мышцах наблюдается мышечная слабость. Регуляция продукции глюкокортикоидов осуществляется за счет двух гормонов — кортиколиберина и АКТГ. Изменение концентрации глюкокортикоидов как гипо-, так и гиперфункции приводит к серьёзным нарушениям в организме. Поджелудочная железа. У взрослого человека форма, размеры и вес железы варьируют в широких пределах. Поджелудочная железа дважды изгибается, огибая позвоночник. В железе различают головку, тело и хвост. Между головкой и телом имеется сужение — шейка; у нижней полуокружности головки - крючкообразный отросток. Длина железы - 14-22 см, поперечник головки — 3,5-6,0 см, толщина тела — 1,5-2,5 см, длина хвоста — до 6 см. Вес железы — 73 - 96 г. Поджелудочная железа расположена забрюшинно, позади желудка. Железа находится над малой кривизной, лежит впереди позвоночника, покрывая аорту в виде поперечного валика. Головка поджелудочной железы выполняет подкову 12перстной кишки, а ее тело и хвост, перекинутые через нижнюю полую вену, позвоночный столб и аорту, простираются к селезенке на уровне I—III поясничных позвонков. В теле железы дифференцируют передневерхнюю, передненижнюю и заднюю поверхности. Проекция тела на переднюю брюшную стенку находится посередине между мечевидным отростком и пупком. Хвостовая часть поджелудочной железы проходит над левой почкой. Позади головки расположены нижняя полая и воротная вены, сосуды правой почки; сосуды левой почки несколько прикрыты телом и хвостовой частью железы. В 12перстную кишку впадает добавочный панкреатический проток. Вдоль всей железы располагается главный панкреатический проток. Он идет центрально. Длина протока - 14 до 19 см, диаметр в области тела — от 1,4 до 2,6 мм, в области головки до места слияния с общим желчным протоком — от 3,0-3,6 мм. На всем протяжении главный проток принимает от 22 до 74 протоков первого порядка. Добавочный панкреатический проток расположен в головке железы.

В синапсах — микроскопических участках где тесно соприкасаются окончание одного нейрона и воспринимающая поверхность другого, приход импульса вызывает внезапное выделение молекул медиатора из окончания. Затем эти молекулы диффундируют через заполненную жидкостью щель между двумя клетками и воздействуют на специфические рецепторы постсинаптической мембраны, изменяя при этом электрическую активность воспринимающего нейрона. За последние годы достигнуты значительные успехи в познании различных медиаторных веществ, в составлении карт, их распределении по мозгу и в выяснении молекулярных процессов синаптической передачи. Такими исследованиями установлено, что действие многих лекарственных веществ и нейротоксинов на поведение основано на их способности прерывать или модифицировать химическую передачу от нейрона к нейрону. В них есть также указания на то, что причинами психических болезней, возможно, окажутся в конечном счёте нарушения функции специфических медиаторных систем мозга. Методика исследования функционального химизма мозга очень сложна, так как медиаторы содержатся в ничтожно малых количествах, ткань мозга структурно и химически очень сложна и выделить для исследования определённую медиаторную структуру нелегко. Одну из методик разработали В. Уиттейкер V. Whittaker и Э. При осторожном разрушении ткани мозга путём гомогенизации в растворе сахарозы многие нервные окончания отрываются от своих аксонов и образуют особые замкнутые частицы, названные "синаптосомами". Синаптосомы содержат механизмы синтеза, хранения, высвобождения и инактивации медиатора, связанные с нервным окончанием; центрифугированием можно очистить от других компонентов нейрона. Эта методика дала нейрохимикам возможность изучать механизмы синаптической передачи в пробирке. Эти методики показали, что медиаторы, расположены не диффузно по всей ткани мозга, а в высшей степени локально в ограниченных центрах и путях — составлены карты для многих медиаторов. Например, многие клетки мозга, содержащие норадреналин сосредоточены в стволе и образуют скопление, известное как locus coeruleus. Аксоны этих нейронов сильно ветвятся и проецируются в различные области — гипоталамус, мозжечок и передний мозг. Норадреналиновые нейроны причастны к поддержанию бодрствования, к системе поощрения центр удовольствия , к сновидениям и к регуляции настроения. Нейроны, содержащие моноамин дофамин сосредоточены в substantia nigra и в вентральной покрышку. Нейроны, содержащие дофамин посылают свои аксоны в передний мозг эмоции и в область полосатого тела регуляция сложных движений. Деградация дофаминовых волокон в данной части мозга приводит к ригидности мышц и тремору, симптомам, характерным для болезни Паркинсона. Избыток дофамина в лимбической системе переднего мозга, возможно причастен к шизофрении. Процесс химической передачи проходит ряд этапов: синтез медиатора, его накопление, высвобождение, взаимодействие с рецептором и прекращение действия медиатора. Каждый из этих этапов детально охарактеризован, и найдены препараты, которые избирательно усиливают или блокируют конкретный этап. Эти исследования позволили проникнуть в механизм действия психотропных лекарственных средств, а также выявить связь некоторых нервных и психических болезней со специфическими нарушениями синаптических механизмов: Синтез молекул медиатора в нервных окончаниях. Каждый нейрон обычно обладает только таким биохимическим "аппаратом", какой ему нужен для синтеза медиаторов, которые выделяются из всех окончаний его аксона. Молекулы медиатора синтезируются путём соединения предшественников или их изменений в результате ряда ферментативных реакций. Может быть один этап ферментативного катализа ацетилхолин или до трёх этапов адреналин. Аминокислоты синтезируются из глюкозы.

Нервные импульсы поступают непосредственно

2280 ответов - 29508 раз оказано помощи. Нервные импульсы поступают непосредственно к железам по. По аксонам нервные импульсы поступают к. Нервный Импульс в нейронах. Какие железы выделяют синтезирующиеся в них гормоны непосредственно в капилляры кровеносных сосудов?

Как устроена периферическая нервная система человека?

Сердитые импульсы поступают конкретно к железам по 1) аксонам двигательных нейронов. Нервные импульсы поступают непосредственно к железам по 1) аксонам двигательных нейронов. Нервные импульсы поступают непосредственно к железам по1)аксонам двигательных. 2293 ответа - 29508 раз оказано помощи. Нервные импульсы поступают непосредственно к железам по 1) аксонам двигательных нейронов. Вариант Часть Нервные импульсы поступают непосредственно к железам по.

Остались вопросы?

Какая железа относится к железам внутренней секреции? Какие железы выделяют синтезирующиеся в них гормоны непосредственно в капилляры кровеносных сосудов? среды путем модификационного приема и проведения импульсов, поступающим по различным каналам.

Похожие новости:

Оцените статью
Добавить комментарий