Новости взрыв звезды в космосе

Звезда в космосе.

Произойдет еще один мощный взрыв: хабаровский астроном рассказал, что ждать в небе и на Земле

Эти новые наблюдения дают ключ к пониманию того, как красные звезды теряют массу в конце своей жизни, когда их печи ядерного синтеза выгорают, прежде чем взорваться как сверхновые. Величина потери массы значительно влияет на их судьбу. Однако удивительно капризное поведение Бетельгейзе не является доказательством того, что звезда вот-вот взорвется в ближайшее время. Таким образом, событие потери массы не обязательно является сигналом неминуемого взрыва. Теперь Дюпре собирает воедино все кусочки головоломки капризного поведения звезды до, после и во время извержения в связную историю о невиданных ранее титанических конвульсиях стареющей звезды. Дюпре подчеркивает, что данные Хаббла сыграли ключевую роль в разгадке тайны. Это совершенно новое явление, которое мы можем наблюдать непосредственно и рассматривать детали поверхности с помощью Хаббла. Мы наблюдаем за эволюцией звезд в режиме реального времени ". Вспышка гиганта в 2019 году, возможно, была вызвана конвективным шлейфом диаметром более миллиона миль, поднимающимся из глубины звезды.

Данный всплеск был зафиксирован в октябре 2022 года американскими космическими бортовыми устройствами NASA.

Источник фото: Фото редакции Причиной всплеска отметили массивную звезду, которая в результате сверхмощного взрыва превратила в черную дыру. Однако исследователи отмечают, что данное явление полностью не изучено и требует дальнейшего изучения.

Таким образом, событие потери массы не обязательно является сигналом неминуемого взрыва. Теперь Дюпре собирает воедино все кусочки головоломки капризного поведения звезды до, после и во время извержения в связную историю о невиданных ранее титанических конвульсиях стареющей звезды. Дюпре подчеркивает, что данные Хаббла сыграли ключевую роль в разгадке тайны. Это совершенно новое явление, которое мы можем наблюдать непосредственно и рассматривать детали поверхности с помощью Хаббла. Мы наблюдаем за эволюцией звезд в режиме реального времени ". Вспышка гиганта в 2019 году, возможно, была вызвана конвективным шлейфом диаметром более миллиона миль, поднимающимся из глубины звезды. Он вызвал толчки и пульсации, которые оторвали кусок фотосферы, оставив звезду с большой площадью холодной поверхности под облаком пыли, образовавшимся в результате охлаждения части фотосферы.

Бетельгейзе сейчас изо всех сил пытается оправиться от этой травмы. Весящий примерно в несколько раз больше нашей Луны, расколотый кусок фотосферы улетел в космос и остыл, образовав пылевое облако, которое блокировало свет звезды, видимый земными наблюдателями.

Яркие оранжевые и бледно-розовые области на новом изображении представляют собой внутреннюю оболочку сверхновой и состоят из серы, кислорода, аргона и неона, сформированные звездой. Пыль и молекулы, из которых впоследствии сформируются новые звезды, также находятся в этом облаке газа. Также исследователи сравнили новое изображение со снимком в среднем ИК-диапазоне, полученным ранее в этом году. Оранжевый и красный цвета на апрельском снимке представляют край главной внутренней оболочки остатка, в то время как на новом изображении эта деталь выглядит как завитки дыма. Эта граница обозначает область, где взрыв сверхновой сталкивается с окружающим веществом, недостаточно горячим для ближнего ИК. Зеленая светящаяся петля на снимке в среднем ИК которую астрономы прозвали Зеленым Монстром также не видна на новом снимке Уэбба.

Звезда Эта Киля, взрыв сверхновой

Они подтвердили , что это событие действительно является тем, что мы классифицируем как классическая Новая, наиболее частый из звездных взрывов, и дали ему название V1405 Cas. Новая звезда слева и тот же участок неба четырьмя днями ранее. Когда две звезды вращаются друг вокруг друга, плотный белый карлик откачивает водород из своего более крупного компаньона. Этот водород попадает в атмосферу меньшей звезды, где нагревается. Когда водород становится достаточно горячим и плотным, на поверхности белого карлика запускается ядерный синтез, высвобождая огромное количество энергии, которое взрывным образом выбрасывает несгоревший водород в космос.

Согласно исследованию, опубликованному в журнале Nature , помимо выброса гамма-всплеска, в результате слияния возникла килоновая звезда — редкий взрыв, который происходит, когда нейтронная звезда сливается с другой нейтронной звездой или черной дырой. Читайте также.

Как бы мы увидели этот процесс и что стало бы с Землей? Давайте разберемся вместе. Бетельгейзе в настоящее время находится в финальной стадии своей короткой жизни. Поэтому, когда красный сверхгигант внезапно потемнел в конце 2019 года, его поведение заставило многих предположить, что он может готов взорваться. Потеря яркости была гораздо больше, чем все ранее зарегистрированные. Анализируя данные от телескопа Hubble и других обсерваторий, астрономы пришли к выводу, что красный сверхгигант в буквальном смысле слова взорвался в 2019 году, выбросив огромное количество вещества со своей поверхности. Это что-то, чего никогда ранее не наблюдали в поведении нормальной звезды. Бетельгейзе - одна из десяти самых ярких звезд на небе в видимом свете, но только 13 процентов его энерговыделения может быть уловлено человеческим глазом. Если бы мы могли видеть весь электромагнитный спектр - включая инфракрасный - Бетельгейзе, с нашей точки зрения, затмил бы каждую другую звезду во вселенной, кроме нашего солнца. Ее радиус примерно в 900-1000 раз больше Солнечного и она поглотила бы Меркурий, Венеру, Землю, Марс и даже пояс астероидов, если бы заменила наше Солнце.

Открытые в 1985 г. В среднем в каждой крупной галактике типа Млечного Пути ежегодно загораются две-три сверхновые, причем на каждую вспышку из группы Ia приходится три-пять сверхновых прочих разновидностей. Хотя в наши дни процессы коллапса массивных звезд обсчитывают с использованием хорошо проработанных физических моделей и мощных компьютерных ресурсов, многие детали этого процесса еще далеки от ясности. Для иллюстрации рассмотрим в общих чертах типичную судьбу голубого сверхгиганта с начальной массой порядка 20—25 солнечных масс. Водородное топливо он сжигает за 7 млн лет, еще полмиллиона лет займет формирование углеродно-кислородного ядра, нагретого до 200 млн К. С его возникновением термоядерный синтез останавливается, но ненадолго. В отсутствие тепловой подпитки ядро сжимается под действием тяготения звездного вещества и соответственно нагревается. По достижении температуры 600—800 млн К углерод начинает гореть с образованием неона и магния, а спустя еще 600 лет при температуре 2,3 млрд К начинается горение кислорода. Оно запусткает цепочки ядерных превращений, которые приводят к синтезу различных изотопов кремния, серы, фосфора, аргона, калия, кальция и скандия. Американский астрофизик индийского происхождения С. Чандрасекар, будущий нобелевский лауреат, в 1930-х гг. Масса, которая получила название «предел Чандрасекара», составляет около 1,4 массы Солнца За сутки до кончины звезды ее ядро нагревается до 3,3 млрд К. Последние поглощаются другими ядрами, образуя все более тяжелые элементы. Поскольку далее термоядерный синтез не идет, железное ядро сжимается и нагревается. В результате возрастает кинетическая энергия атомов железа, и они претерпевают хаотические превращения. Некоторые из них распадаются, а некоторые, напротив, вступают в реакции слияния и порождают более тяжелые элементы, такие как платина и золото. Поскольку эти реакции идут за счет накопленной тепловой энергии, температура звездного ядра уменьшается, давление его вещества падает, и ядро вновь начинает сжиматься. Этот процесс ускоряется, если в окрестностях ядра продолжаются процессы термоядерного синтеза, которые порождают новые и новые ядра железа. Затем наступает финальный катаклизм. Электроны прижимаются к ядрам и сливаются с протонами, превращаясь в нейтроны и нейтрино. Нейтроны остаются на месте, а нейтрино вылетают в пространство. В результате сердцевина звезды охлаждается, давление ее вещества вновь падает, а темп сжатия увеличивается. Этот процесс имплозии начинается и завершается за считанные секунды, поэтому внешние слои звезды не успевают ничего почувствовать. Наружный наблюдатель в течение еще нескольких часов не заметит ни малейших перемен. На этой стадии возможны два сценария. Полагают, что звезды с массой от 30 до 100 солнечных масс коллапсируют полностью и дают начало черным дырам. У звезд в диапазоне 12—30 по другим модельным симуляциям 12—20 солнечных масс образуются ядра из нейтронной материи, плотность которой в 100 триллионов раз превышает плотность воды. Внешние слои звезды обрушиваются на ядро и «отскакивают» от него со скоростью в десятки тысяч километров в секунду. Поскольку эта скорость значительно превышает скорость звука в звездном веществе, образуется ударная волна, буквально разрывающая звезду изнутри. По всей вероятности, ей «помогают» тепловые нейтрино, приходящие из «вскипающего» нейтронного ядра, нагретого как минимум до 150 млрд К это самая высокая температура, возможная в нынешней Вселенной. От звезды остается деформированный нейтронный шар радиусом около десяти километров, окруженный облаком сверхгорячей плазмы. Это и есть нейтронная звезда. Звезде был присвоен индекс SN 2007bi. Возможно, это было первое наблюдение сверхновой с парной нестабильностью. Звезды этой группы очень быстро сжигают водород и гелий. После сгорания углерода в их ядрах возникают гамма-кванты, которые при столкновениях превращаются в электронно-позитронные пары, а возможно, и в более тяжелые частицы и античастицы. Однако в этом случае пульсаций не возникает, и внешние слои звезды падают в ее центр. Давление в перегретом ядре катастрофически возрастает, и ядро взрывается, не успев сколлапсировать в черную дыру. Однако подобные симуляции выполняются лишь при значительном упрощении базовых моделей и при этом требуют месяцев работы суперкомпьютеров. Чтобы сделать их более реалистичными, необходимы компьютеры, на два порядка более мощные, но появятся они не раньше, чем через десять лет. Как ни парадоксально, но надежней всего моделируется гравитационный коллапс самых массивных звезд с начальной массой более 100 солнечных. В их недрах уже на стадии синтеза кислорода появляются жесткие гамма-кванты, которые при взаимных столкновениях превращаются в электронно-позитронные пары. Поскольку часть гамма-квантов при этом теряется, происходит падение лучевого давления, которое противодействовало гравитационному сжатию звезды и удерживало ее в состоянии гидростатического равновесия. Далее все зависит от начальной массы. Если она не превышала 130—140 солнечных, то в недрах звезды возникают пульсации, способные инициировать быстрый выброс части вещества внешних оболочек, однако недостаточно сильные, чтобы полностью разрушить ее изнутри. Эти пульсации быстро гасятся, и звезда возобновляет коллапс, приводящий к образованию железного ядра. Они также порождают коллапсирующие железные ядра, но в этом случае на стадии термоядерного горения углерода ядро прекращает дальнейшее сжатие, так что кислород не поджигается. Когда углерод полностью выгорает, превратившись в неон и магний, кислородно-неоново-магниевое ядро сжимается до тех пор, пока сила тяготения не уравновешивается квантовым давлением вырожденного электронного газа. Однако эта задержка недолговечна. Ядра неона и магния поглощают электроны и превращаются в изотопы элементов с меньшими номерами по таблице Менделеева. Плотность электронного газа падает, сердцевина звезды стягивается, и процесс все равно заканчивается коллапсом железного ядра. Гиперновые, сила аккреции и чудеса связанных пар В апреле 2007 г. В каталоги она вошла под индексом SN 2007bi. Не исключено хотя пока и не доказано! Опубликованные тогда сценарии описывали эволюцию звезд с начальными массами от 130 до 250 солнечных. Масса звезды-предшественницы новооткрытой сверхновой лежала как раз в середине этого промежутка.

Al Arabiya: сильнейшее гамма-излучение от взрыва звезды достигло атмосферы Земли

После обнаружения взрыва астрофизики несколько дней наблюдали за космосом и смогли сделать достаточно интересные дополнительные открытия. Он приблизит человечество к раскрытию тайн космоса. Астроном Сурдин рассказал о важности первого наблюдения за процессом взрыва умирающей звезды. Радует, что если взрыв произойдет, то Земля останется в безопасности при такой дистанции (мы в зоне риска лишь при дистанции в 50 световых лет), а исследователи получат возможность изучить сверхновую вблизи. Ученые считают, что взрыв мог произойти из-за поглощения огромного облака газа сверхмассивной черной дырой.

Бетельгейзе готовится к взрыву? Ученые отмечают странное поведение звезды

Их могут захватить атомы, которые потом распадаются на более тяжелые элементы, включая теллур. При этом выделяется излучение, которое ученые видят как яркий взрыв, известный как килоновая звезда. Ранее убедительных доказательств участия килоновых звезд в производстве тяжелых металлов не было, уточнили ученые. Ранее Владимир Путин поручил кабмину разработать нацпроект по развитию космической сферы до 1 июля 2024 года.

Поэтому коричневый карлик охлаждается, несмотря на тлеющую в его ядре водородную печь, сохраняющую активность от одного до десяти миллиардов лет. Затем синтез гелия прекращается, хотя в ядре и остается немало несожженного водорода. Наблюдать коричневые карлики сложно из-за их малой яркости. Завершая свою жизнь постепенным остыванием, коричневые карлики никогда не взрываются.

Начальные массы настоящих звезд лежат в диапазоне от 0,075 до двух-трех сотен масс Солнца. Все они до конца сжигают свои водородные ядра, после чего теряют стабильность и претерпевают различные изменения. Для достаточно массивных но не самых! Но начальная масса определяет эволюцию лишь тех звезд, которые не имеют близких соседей. Однако примерно половина светил не существуют, как Британия былых времен, in splendid isolation: звезды любят объединяться в пары, связанные взаимным притяжением. В таких системах возможен, и часто происходит, перенос или, если угодно, «перетек» вещества с одной звезды на другую. Эти процессы имеют прямое отношение ко вспышкам новых звезд различных типов.

Однако в бинарных системах взрываются звезды и с весьма скромной начальной массой, с которых мы и начнем. Звезды с массами до половины солнечной красные карлики синтезируют в своих ядрах гелий из водорода и на этом успокаиваются. Светила потяжелее ведут себя гораздо интересней. Когда в центре такой звезды образуется гелиевое ядро, где горение уже не идет, оно начинает сжиматься под действием тяготения. При сжатии температура ядра возрастает, и прилегающий слой водорода нагревается до порога, за которым начинаются термоядерные реакции. Поскольку тепло перетекает из этого слоя к поверхности звезды, ее атмосфера раздувается настолько, что звезда разбухает в десятки и сотни раз. В процессе расширения звездная оболочка постепенно остывает, максимум ее оптического спектра смещается в сторону длинных волн, и звезда превращается в красный гигант.

Такая судьба ожидает и наше Солнце. Судьба звездного ядра также зависит от начальной массы звезды. Если она ненамного больше половины солнечной, ядро остается гелиевым. До поры до времени оно продолжает сжиматься, но не нагревается до температур порядка 100 млн градусов, когда начинаются новые термоядерные превращения. Ядра более массивных звезд нагреваются так, что становятся способны производить углерод и кислород. Если же начальная масса звезды в несколько но не более, чем в восемь раз превосходит солнечную, то в ее ядре синтезируются неон и магний. А вот элементы с большими атомными номерами там не возникают, поскольку такая звезда не способна спрессовать ядро для достижения температур, нужных для их синтеза.

Пока в ядре и вокруг него продолжается генерация термоядерной энергии, оболочка звезды еще больше расширяется, и красный гигант становится сверхгигантом. Однако эти космические исполины не отличаются устойчивостью. Но одиночный карлик обречен на постепенное остывание. Он будет желтеть, краснеть, а потом и вовсе потухнет в оптическом диапазоне. Дело это небыстрое, счет идет на многие миллиарды лет. Пока что самые тусклые белые карлики, внесенные в астрономические каталоги, немногим холоднее Солнца. Радиус типичного белого карлика сравним с земным, а масса составляет 0,6—1,2 массы Солнца.

Белые карлики с массами свыше 1,44 солнечной массы не существуют и не могут существовать, но об этом позже. Материя белого карлика сжата до давлений, при которых разрушаются атомные электронные оболочки. Возникает особого рода плазма, состоящая из атомных ядер и вырожденного газа обобществленных электронов, движением которых управляют законы квантовой механики. Давление такого газа так называемое давление Ферми не зависит от температуры и определяется исключительно плотностью, поэтому остывание белого карлика не сказывается на его внутренней структуре. В отличие от звезды-родительницы, это чрезвычайно устойчивая физическая система: если белый карлик не будет проглочен черной дырой, он просуществует до тех пор, пока протоны не начнут распадаться, как им предписывают современные теории физики элементарных частиц. Период же их полураспада заведомо превышает 1032 лет. Коллапсирующие ядра Звезды с начальной массой свыше восьми солнечных заканчивают жизнь взрывами фантастической мощности, вызванными очень быстрым сжатием коллапсом их ядер.

Одна сотая этого остатка т. И хотя световые вспышки гибнущих массивных звезд представляют из себя феерическое зрелище, на их долю приходится лишь одна сотая доля процента высвобожденной энергии. Именно эти космические катаклизмы и называют сверхновыми звездами, или просто сверхновыми. Их подразделяют на группы в соответствии с оптическими спектрами. Эту классификацию 80 лет назад предложили Бааде и его коллега по обсерватории Маунт-Вильсон Рудольф Минковский, племянник знаменитого математика, эмигрировавший из Германии. Излучение сверхновых I типа не содержит линий испускания водорода, которые есть у сверхновых II типа, зато они включают семейство, спектры которого демонстрируют наличие ионизированного кремния. Представители группы Ia взрываются на основе иного механизма, нежели гравитационный коллапс их ядер, поэтому о них поговорим позднее.

Открытые в 1985 г. В среднем в каждой крупной галактике типа Млечного Пути ежегодно загораются две-три сверхновые, причем на каждую вспышку из группы Ia приходится три-пять сверхновых прочих разновидностей. Хотя в наши дни процессы коллапса массивных звезд обсчитывают с использованием хорошо проработанных физических моделей и мощных компьютерных ресурсов, многие детали этого процесса еще далеки от ясности. Для иллюстрации рассмотрим в общих чертах типичную судьбу голубого сверхгиганта с начальной массой порядка 20—25 солнечных масс. Водородное топливо он сжигает за 7 млн лет, еще полмиллиона лет займет формирование углеродно-кислородного ядра, нагретого до 200 млн К. С его возникновением термоядерный синтез останавливается, но ненадолго. В отсутствие тепловой подпитки ядро сжимается под действием тяготения звездного вещества и соответственно нагревается.

По достижении температуры 600—800 млн К углерод начинает гореть с образованием неона и магния, а спустя еще 600 лет при температуре 2,3 млрд К начинается горение кислорода. Оно запусткает цепочки ядерных превращений, которые приводят к синтезу различных изотопов кремния, серы, фосфора, аргона, калия, кальция и скандия. Американский астрофизик индийского происхождения С.

Вам будет интересно: Правда ли, что в 2025 году у Сатурна исчезнут кольца Как найти созвездие Северная Корона Вспышку сверхновой можно будет увидеть невооруженным глазом, она будет выглядеть как яркая звезда на небе. Чтобы найти ее, в первую очередь нужно понять, где находится созвездие Северная Корона. Оно располагается слева от Большой Медведицы и выглядит как небольшая дуга из семи звезд. Тау находится у левого края — если периодически поглядывать в эту область, летом 2024 года можно будет заметить, что звезда стала ярче. Примерно через неделю она снова потухнет и будет видна только через бинокль или телескоп. Созвездие Северная Корона на ночном небе.

Изображение: skygazer. Это бесплатно! Чтобы быстро находить планеты, звезды и другие космические объекты на небе, лучше всего использовать специальные приложения. Одним из самых популярных является Stellarium, который доступен на Android и iOS.

В случае планет, подобных Земле, это может привести к разрушению озонового слоя, который отражает опасное ультрафиолетовое излучение звезды-хозяина. Это может вызвать гибель большого числа организмов, особенно морских — основы пищевой цепи, что приведет к массовому вымиранию видов. Исследование выявило, что среди четырех рассмотренных сверхновых, SN 2010jl произвела наибольшее количество рентгеновских лучей. Авторы статьи считают, что эта сверхновая могла бы стать источником смертельной дозы рентгеновского излучения для подобных Земле планет, находящихся на расстоянии менее 100 световых лет от взрыва. Это существенно сокращает зоны, пригодные для обитания в Млечном Пути, известные как галактические обитаемые зоны. Эти результаты помогут ученым понять влияние сверхновых на возможность возникновения и развития жизни на различных планетах, а также на формирование и эволюцию галактик.

Россияне в апреле смогут увидеть взрыв двойной звезды: это происходит лишь раз в 80 лет

Это может вызвать гибель большого числа организмов, особенно морских — основы пищевой цепи, что приведет к массовому вымиранию видов. Исследование выявило, что среди четырех рассмотренных сверхновых, SN 2010jl произвела наибольшее количество рентгеновских лучей. Авторы статьи считают, что эта сверхновая могла бы стать источником смертельной дозы рентгеновского излучения для подобных Земле планет, находящихся на расстоянии менее 100 световых лет от взрыва. Это существенно сокращает зоны, пригодные для обитания в Млечном Пути, известные как галактические обитаемые зоны. Эти результаты помогут ученым понять влияние сверхновых на возможность возникновения и развития жизни на различных планетах, а также на формирование и эволюцию галактик. В будущем астрономы смогут использовать эти данные для определения потенциально обитаемых планет и изучения их характеристик с учетом воздействия сверхновых.

По словам Кука, точную дату явления назвать невозможно, но его «будет видно невооруженным глазом». Уникальность звезды в том, что ее взрыв происходит примерно каждые 80 лет.

Кук сравнил ее яркость с Полярной звездой.

Будь в курсе последних новостей из мира гаджетов и технологий iGuides для смартфонов Apple Сверхновые взрываются по всему Млечному Пути — почему мы их не видим? Егор Морозов — 20 декабря 2020, 15:06 4 июля 1054 года взорвалась звезда в созвездии Тельца. На событие, произошедшее примерно в 6500 световых годах от Земли, обратили внимание жители каньона, который веками позже стал известен как Нью-Мексико. Они нарисовали «небесный фейерверк» — который, вероятно, затмевал Венеру по яркости — на защищенной от солнечного света и осадков поверхности нависающей скалы. По оценкам астрономов, в нашей галактике за последнее тысячелетие взорвалось около 50 звезд — примерно по одной каждые два десятилетия. Сверхновая 1054 года, образовавшая Крабовидную туманность — это одна из пяти самых ярких звездных детонаций, которые исследователи точно определили по историческим записям. Последний такой яркий звездный взрыв произошел в 1604 году — эту сверхновую назвали именем астронома Иоганна Кеплера, который внес значительный вклад в ее изучение. И с тех пор, уже больше 400 лет, мы не видели ярких небесных шоу. Так где же все сверхновые?

Почему мы больше их не наблюдаем? Заинтригованная этим несоответствием группа астрономов недавно выяснила, насколько сложно обнаружить сверхновые и где в небе они, скорее всего, будут видны. В предварительной статье, которая еще не рецензировалась, опубликованной на arXiv , они объявили о странном результате. В то время как общее количество исторических сверхновых подтверждается, все они находятся в «неправильных» местах.

Данные были получены китайской обсерваторией LHAASO, построенной специально для обнаружения гамма- и космического излучения путем измерения каскадов частиц в атмосфере Земли. Эти результаты должны быть подтверждены другой командой астрономов, после чего их внесут в реестры. В любом случае, событие такого масштаба случается редко — раз в десятилетия или даже столетия.

Подобные события открывают перед учеными уникальную возможность лучше понять происхождение элементов тяжелее железа. Ученые из США обнаружили, что гамма-вспышки ведут себя странно. Они не становятся ярче и не затухают равномерно, а мерцают.

Взрыв в далеком космосе

  • Телескоп Джеймса Уэбба сфотографировал фееричные последствия сверхновой - Shazoo
  • Зафиксирован крайне редкий тип взрывов в космосе — Федеральная служба новостей
  • Телескоп Джеймса Уэбба сфотографировал фееричные последствия сверхновой - Shazoo
  • Вспышка из Вселенной: космический взрыв родил огромный огненный шар

Мертвая звезда осветила мощной вспышкой соседнюю галактику

Звезда стала новостью последних дней, поскольку явила необычный по глубине минимум яркости. А столкновение таких звезд и последующий космический взрыв распыляет эту материю, которая богата свободными нейтронами. Из теории эволюции звёзд известно, что звёзды подобного типа взорвать невозможно, и, следовательно, нужен механизм продления жизни для звёзд масс 1—2. звезда бетельгейзе взорвалась, взрыв бетельгейзе, бетельгейзе взорвалась Бетельгейзе – звезда в созвездии Ориона, одна из ярчайших на ночном небосклоне. Космос. Россияне в апреле смогут увидеть взрыв двойной звезды: это происходит лишь раз в 80 лет.

В 2024 году произойдет первый за 80 лет видимый взрыв сверхновой — как на него посмотреть

У каждого космического инструмента своя работа Все это произошло благодаря тому, что появились телескопы нового типа, которые работают практически без участия человека. Это телескопы-роботы, которые постоянно оглядывают небо в поисках чего-то интересного, а когда находят это, сообщают астрономам, объяснил Сурдин. По его словам, такая система телескопов-роботов стоит по всей территории России, а также в Южной Африке, Южной Америке и на Канарских островах, то есть во всех точках земного шара, откуда хорошо видно небо. Такую систему роботов сейчас строят по всему миру, отметил астроном, и благодаря им стали делать такие удивительные открытия. По мнению Сурдина, новый телескоп «Джеймс Уэбб» не сможет наблюдать за такими явлениями, потому что у него очень небольшое поле зрения, он смотрит в одном каком-то направлении, куда его направили. Телескопы-роботы, как объяснил астроном, обладают широким полем, их много на земле, и они в состоянии контролировать все небо. Если роботы находят что-то интересное, тогда большим телескопом — и наземным, и космическим, таким как телескоп «Хаббл» или «Джеймс Уэбб», — сообщают, куда надо посмотреть. Конечно, эти телескопы увидят намного более детальную картину, но для этого они должны знать, куда смотреть, отметил Сурдин. У каждого космического инструмента, у каждого космического прибора своя область работы: маленькие роботы осматривают все небо, а потом сообщают большим, гигантским телескопам, куда наиболее интересно направить свой взгляд, добавил собеседник «360».

Источником изучения стал гамма-всплеск", — сообщило NASA. Астрономы назвали произошедшее "криком рождения новой черной дыры". Она сформировалась в центре массивной звезды, разрушившейся под собственным весом. Зарождающаяся черная дыра привела в движение мощные потоки частиц, двигающихся со скоростью, близкой к скорости света. Они пронзили звезду, которая, вероятно, в 30-40 раз больше Солнца, после чего произошло рентгеновское и гамма-излучение в космос.

AT2022tsd — светящийся быстрый голубой оптический переходный процесс LFBOT , расположенный примерно в миллиарде световых лет от Земли и получивший название «Тасманийский дьявол». Вместо того, чтобы постепенно исчезать, как это делают другие подобные объекты, он многократно взрывался в течение нескольких месяцев и выбрасывал энергетические вспышки в сотни миллиардов раз больше, чем у звезд, подобных Солнцу. LFBOT — это редкие астрономические события, впервые выявленные в 2018 году и характеризующиеся интенсивным, ярким взрывом — более мощным, чем вспышка сверхновой, после которого следует быстрое угасание. Однако «Тасманийский дьявол» продемонстрировал по меньшей мере 14 беспорядочных ярких вспышек, каждая из которых длилась по несколько минут. Они происходили в течение 120 дней с момента его первого зарегистрированного взрыва, причем многие последующие вспышки были ярче, чем предыдущие.

Самая яркая известная сверхновая SN 1006 была подробно описана китайскими и арабскими астрономами. Хорошо наблюдалась сверхновая SN 1054 , породившая Крабовидную туманность. Сверхновые звёзды SN 1572 и SN 1604 были видны невооружённым глазом и имели большое значение в развитии астрономии в Европе, так как были использованы в качестве аргумента против аристотелевской идеи, гласившей, что мир за пределами Луны и Солнечной системы неизменен. Иоганн Кеплер начал наблюдение SN 1604 17 октября 1604 года. Это была вторая сверхновая, которая была зарегистрирована на стадии возрастания блеска после SN 1572, наблюдавшейся Тихо Браге в созвездии Кассиопеи. С развитием телескопов сверхновые звёзды стало возможно наблюдать и в других галактиках; первой стала сверхновая S Андромеды в Туманности Андромеды в 1885 году. В течение двадцатого столетия были разработаны успешные модели для каждого типа сверхновых, и понимание их роли в процессе звездообразования возросло. В 1941 году американскими астрономами Рудольфом Минковским и Фрицем Цвикки была разработана современная схема классификации сверхновых звёзд.

Вот-вот взорвётся: Учёные взбудоражены внезапной вспышкой Бетельгейзе

Астрономы назвали полученную иллюстрацию взрыва сверхновой звезды самой детализированной в истории. Как астрономы обнаружили остатки взрывов первых звезд в истории космоса. Однако взрыв оказался беспрецедентно плоским, что является очень необычным явлением, поскольку звезды обычно взрываются в сферической форме из-за своей формы.

Взорвётся ли Бетельгейзе и чем это нам грозит?

То есть, звезда взрывается примерно каждые 80 лет, притом яркость ее увеличивалась более чем в 600 раз. Этот взрыв, получивший название GRB 230307A, вероятно, возник, когда две нейтронные звезды — невероятно плотные остатки звезд после вспышки сверхновой — слились в галактике на расстоянии около одного миллиарда световых лет. Ранее российские физики в соавторстве с европейскими коллегами сымитировали в лаборатории рождение новых звезд в результате взрыва сверхновой. Ученые считают, что взрыв мог произойти из-за поглощения огромного облака газа сверхмассивной черной дырой.

Такое случается раз в 80 лет: на Земле увидят взрыв «полыхающей звезды»

Взрыв сверхновой в Большом Магеллановом облаке продолжался сотни лет и дал астрономам возможность изучить разные фазы жизни звезды — до и после ее смерти. Звезда в космосе. Вы здесь: Главная» Все новости» Наука» В космосе впервые зафиксировали взрыв сверхновой в результате столкновения звезд. Британские исследователи космоса сообщили об обнаружении крупнейшего за всю историю наблюдения космического взрыва.

Похожие новости:

Оцените статью
Добавить комментарий