Новости атомная батарейка

Атомную батарейку, которая эффективно сможет работать десятки лет, продлевая работоспособность космических и глубоководных приборов, создали ученые НИТУ «МИСиС».

Почему ядерные батарейки так и не стали популярны? История почти забытой технологии

Тритий же считается мягким излучателем, его слабосильные бета-частицы на это неспособны. Зато изотоп отлично подходит для создания батарей другого типа — тех, что называют бета-вольтаическими, или просто атомными. Работают они почти так же, как фотоэлементы солнечных панелей, только полупроводниковый генератор тока в атомных батареях бомбардируется не фотонами, а бета-излучением. Попадание достаточно энергичной 1—100 тыс. На границе полупроводников с электронной N— и дырочной P— проводимостью возникают разница потенциалов и ток. Мощность его невелика, не более сотен микроватт, зато источник получается исключительно миниатюрным, долговечным и надежным. Ориентировочная стоимость: от 200—300 тыс.

Роскосмос Источник Атомная батарейка состоит всего из двух ключевых компонентов: источника бета-излучения и полупроводникового преобразователя. На роль первого из них тритий подходит почти идеально. Но именно из-за долгого полураспада никель имеет очень низкую радиоактивность. Тритий тоже довольно мягкий излучатель, но по остальным параметрам он почти оптимален и позволяет рассчитывать на средний срок службы батареи в 20-25 лет». Тонкие слои излучателя чередуются со слоями полупроводников, чтобы улавливать как можно больше бета-частиц, превращая их энергию в ток. Чтобы разместить этот летучий изотоп в устройстве, ученые поступают так же, как и при его нейтрализации на АЭС, — переводят в твердую форму гидрида, связывая металлическим сорбентом.

Такая связь легко обратима и при сильном нагревании позволяет получить свободный тритий, а при охлаждении — связать его снова. Впрочем, в обычной жизни нужные температуры встречаются редко, и в пределах сотни градусов в любую сторону от нуля изотоп остается надежно связанным в металле. В результате долгих и кропотливых экспериментов специалисты научились насыщать сорбент с большой эффективностью, добиваясь стехиометрического отношения металла и трития как 1:2.

Схема преобразования Превращение батарейки в селективно излучающую систему в инфракрасном диапазоне, позволяет увеличить эффективность работы источников питания, часть энергии которых обычно безвозвратно тратиться на тепло, что и было экспериментально продемонстрировано учеными НИЯУ МИФИ в рамках опытно-конструкторской работы по договору с ЧУ «Наука и инновации» Госкорпорации «Росатом». Также было проведено исследование технических характеристик прототипа, разработан полный комплект конструкторской документации для масштабирования, отработана технология преобразования тепловой энергии ядерного распада в электричество с помощью термофотовольтаических преобразователей. Разработка термофотовольтаических преобразователей в настоящее время активно ведется в США и Европе с целью увеличить эффективность РИТЭГ для использования в космических аппаратах. На текущий момент, основной путь создания высокоэффективных радиоизотопных источников энергии — поиск новых или модифицированных материалов, например, нано- материалов, которые могли бы по своим полупроводниковым свойствам заменить кремний, германий и другие узкозонные полупроводники. Идея, предложенная учеными НИЯУ МИФИ — это оригинальный альтернативный подход к решению проблемы преобразования энергии ядерного распада в электричество.

Её реализация позволила использовать процесс преобразования энергии во всем объеме материала, что увеличивает эффективность преобразования и открывает широкие возможности масштабирования данных элементов для получения как больших мощностей, так и миниатюризации. Это дает право рассматривать данный подход к созданию ядерных батарей с энергиями до единиц кВт как универсальный.

Тритиевые «батарейки» могут служить в течение 15 лет.

Источники питания мощностью 200 нановатт могут использоваться в датчиках различных аэрокосмических приборов, микросхем и т. Ранее канал «Наука» рассказал об изотопе урана.

Материал нужен максимально прозрачный для бета-частиц, но и достаточно емкий по содержанию трития». Преобразователь В атомной батарейке тонкие слои сорбента чередуются со слоями полупроводников, чтобы те могли улавливать как можно больше бета-частиц, превращая их энергию в ток. Проблема в том, что все они "заточены" под создание солнечных панелей. Фотоны уловить сложнее, поэтому полупроводниковые преобразователи там более толстые — бета-частицы через них просто не пробьются». Срок службы тритиевых батареек City Labs составляет около 20 лет. За это время их мощность падает примерно втрое. Это амбициозная, но достижимая цель. И тогда даже эти крошечные батарейки смогут пригодиться довольно широкому кругу потребителей».

Потребители Батарейки размером с таблетку, причем работающие пару десятков лет, необходимы множеству приборов, которые не нуждаются в сильных токах. Это могут быть микроэлектроника и микроэлектромеханика MEMS космических аппаратов и беспилотников, модули памяти, кардиостимуляторы, датчики для контроля за состоянием инфраструктуры и сенсоры, ведущие длительный мониторинг окружающей среды — особенно в удаленных и труднодоступных районах, где их замена — сложная задача. Тритий обеспечит питание таких устройств на протяжении многих лет, пока выдерживает полупроводник. Кроме того, современное законодательство запрещает использование радиоактивных источников в пользовательских устройствах. Для работы с такими материалами производителям требуются лицензии — ни у одной российской компании, выпускающей полупроводники, необходимых документов пока нет. Трудно представить себе, какой должна быть конструкция с полной "защитой от дурака"». Сегодня производство бета-вольтаических батареек ограничивается мелко- или среднесерийными партиями. Даже лидер City Labs, насколько известно, выпускает менее 1500 изделий в год.

Ядерное питание: российские учёные создали атомную батарейку повышенной мощности

Бета-излучение в данном случае обладает малой проникающей способностью и легко задерживается оболочкой. А используемый изотоп «никель-63» не имеет сопутствующего гамма-излучения. Так что сами батарейки не излучают и совершенно безопасны. Чтобы компенсировать малую мощность природного бета-распада, физики используют импульсный режим с накоплением заряда.

В этом случае удается обеспечить непрерывную мощность электрического тока 10-100 нановатт с каждого кубического сантиметра устройства.

Например, кроме обычного водорода с одним протоном 1H существует его более тяжёлый изотоп - дейтерий 2H , у которого в ядре протон и нейтрон. Есть ещё и тритий с одним протоном и двумя нейтронами 3H. Если химических элементов в таблице Менделеева больше сотни, то изотопов - свыше трёх тысяч. Большинство из них нестабильны: одни распадаются миллиарды лет, другие - за доли секунды.

При распаде выделяется энергия, которую можно использовать себе во благо. Самый очевидный пример - атомные электростанции, в которых тепло от распада урана-237 превращается в электроэнергию. Такой источник энергии не обязательно должен быть громадным, как АЭС. Например, на космических аппаратах "Пионер" и "Вояджер" установлены вполне компактные энергетические установки, работающие на изотопе плутония. Благодаря им эти аппараты смогли покинуть пределы Солнечной системы и продолжают свой путь во Вселенной.

Другой вариант использования энергии распада изотопа - новая технология под названием бетавольтаика. Как она работает? В результате бета-распада ядро изотопа выбрасывает электрон и антинейтрино либо - реже - позитрон и нейтрино излучение попадает в полупроводник, который преобразует его в электрический ток. Аналогичным образом устроена солнечная батарея, только здесь вместо фотонов от Солнца улавливается электрон от изотопа. Почему бетавольтаика так перспективна?

Она даёт энергию долго - десятилетиями. Не требует обслуживания. Да, у такой батарейки низкая мощность, но зато высокая энергоёмкость. И тут не нужны тяжёлые радиоактивные изотопы вроде плутония.

Этой энергии должно хватить для автономного питания кардиостимулятора в течение многих лет. Сфера применения представленной батареи весьма широка. Ядерные батарейки можно использовать в любые сферах, где есть потребность в автономных источниках энергии с большим сроком службы: медицина, микроэлектроника, ядерная энергетика и другие.

РИТЭГ: что было до ядерных батареек. Такие устройства использовали в космосе, в тех местах, где невозможно применять солнечные батареи. Например, на космических кораблях, которые отходят далеко от Солнца. Внутри устройства — радиоактивный изотоп, который распадается естественным путём и при этом выделяет тепло. Специальные элементы преобразуют это тепло в электричество. РИТЭГ — хорошо изученная технология, но не слишком эффективная. При таком способе преобразования теряется много энергии. К тому же термические преобразователи громоздкие и хрупкие, пользоваться ими не очень удобно. Нужна была более совершенная технология. Электронно-вольтаический эффект и сэндвич-структура. В 50-х учёные выяснили, что бета-излучение радиоактивных изотопов может генерировать электрический ток, если проходит через полупроводники. На основе этого эффекта начали создавать генераторы. Изотоп испускает частицы, а полупроводниковая часть преобразует эти частицы в энергию», — поясняет Сергей Леготин. С помощью таких «сэндвичей» стало можно создавать источники питания, которые вырабатывали бы энергию в течение многих лет без подзарядки. Но у таких батареек тоже были свои минусы: бета-вольтаические элементы дают довольно слабый электрический ток. Поэтому батарейка может питать только маломощные элементы, а для питания чего-то более мощного нужен целый кластер из множества бета-вольтаических элементов. Со временем полупроводниковые технологии совершенствовались. Стало возможно создавать структуры с улучшенным качеством преобразования энергии изотопа в ток. Многие современные ядерные батарейки тоже пользуются бета-вольтаическими элементами. Термофотовольтаика и светящиеся капсулы. Ещё одна технология — создавать батарейки на основе альфа-излучения, за счёт принципа, который называется термофотовольтаическим. Изотоп, испускающий альфа-частицы, — чаще всего это плутоний — погружается в специальную капсулу с напылением. Стенки капсулы под воздействием радиации нагреваются до температуры в 1500 градусов по Кельвину. Капсула становится настолько горячей, что её стенки светятся. Этот свет улавливают фотоэлементы, расположенные вокруг капсулы, и преобразуют в электричество. Похоже на солнечные батареи, но вместо Солнца светится капсула с изотопом. А ещё плутоний даёт намного большие мощности: одна батарейка может выдавать несколько сотен ватт. Хотя есть и свои сложности. Альфа-излучение довольно интенсивное и чаще всего сопровождается гамма-излучением. Под его воздействием понемногу разрушаются узлы батарейки: провода, преобразователи энергии и другие комплектующие. Со временем их понадобится заменять.

80 лет без подзарядки: в России создали атомную батарею

Так, один грамм оксида плутония-238 238-PuO2 генерирует 0,5 ватта тепловой энергии. Если ее перевести в электрическую, то получим «батарейку». У каждого изотопа на один или несколько электронов больше, чем нужно. И они, в зависимости от своей структуры, рано или поздно стремятся «отдать» лишнее. При этом выделяется тепло, его и переводили в электрическую энергию. Как пустить тепло по электрическим проводам? На тот момент уже были известны разные методы. Термоэлектрический — если спаять два провода из разных металлов и нагревать один из них, то по ним пойдет ток. Позже появился термофотоэлектрический — улавливать «детектором» в инфракрасном спектре фотоны.

Или даже термоэлектрический конвертер, начинка которого из расплавленных солей натрия и серы при нагреве тоже даст электричество. В общем, перевод энергии из одного вида в другую не был проблемой. Период полураспада — срок жизни изотопов. У 238-го он 87,7 лет. Через этот срок в килограмме лишь половина вещества останется изотопом, а остальная часть избавится от «лишних» электронов и в данном случае превратится в уран-234. Через еще 87,7 лет останется лишь 250 граммов. Не получится загрузить на борт космического аппарата десяток батареек и менять их по мере надобности — они все начинают работу еще до того, как их подключают к системе. Постоянное уменьшение количества радиоактивного топлива означает и уменьшение тепла и электричества.

Но не все так плохо. В космосе не только светло, но и темно В батарейках на основе диоксида плутония-238 увидели смысл в космической промышленности. Например, на околоземной орбите спутнику достаточно солнечных батарей размером с 4 парковочных места. Для полета к Марсу понадобится вдвое большая площадь. К Юпитеру — еще увеличить раз в 8.

Итак, что же такое — "тысячелетняя атомная батарея"?

Начнем с того, что ее корпус сделан из необычного материала — синтетических наноалмазов. Внутрь корпуса помещен радиоактивный сердечник, изготовленный из переработанных ядерных отходов, — углерода-14. Этот изотоп применяется в ядерной медицине, с его помощью диагностируют заболевания желудочно-кишечного тракта. Ядерные реакторы, использующие воду в активной зоне, также являются источником углерода-14. Дальше процитируем пресс-релиз: "Радиоизотопы выделяют большое количество тепла. Благодаря неупругому рассеянию, возникающему из-за присутствия монокристаллического алмаза, конструкция предотвращает самопоглощение тепла радиоизотопом и обеспечивает быстрое преобразование в электроэнергию".

Фото: Nano Diamond Battery Тесты, проведенные в Ливерморской национальной лаборатории имени Лоуренса и Кавендишской лаборатории Кембриджского университета, подтвердили, что атомная батарейка безопасна для человека и окружающей среды: радиационный фон вокруг нее остается в норме.

В частности, Betavolt предполагает, что при соблюдении соответствующих норм атомные батарейки могут использоваться потребителями для питания таких устройств, как мобильные телефоны, предлагая альтернативу частой подзарядке обычных аккумуляторов. Батарея не генерирует внешнего излучения, не воспламеняется и не взрывается в ответ на раздражители. Эта особенность также открывает путь к потенциальному применению в медицине, например, в кардиостимуляторах и искусственных сердцах. Что касается сроков, то сказать сложно. Однако известно, что в настоящее время BV100 находится на стадии опытной эксплуатации, а в планах — серийное производство. В будущем Betavolt также планирует разработать более мощные батареи, а также изучить возможность использования различных радиоактивных изотопов для различных целей.

Эта разработка, как и множество других подобных в США, России и в других странах, использует источник изотопов, который выделяет энергию при радиоактивном бета-распаде. У таких батарей низкий КПД на уровне единиц процентов, но работать они могут десятилетиями, поэтому, например, нашли применение в качестве бортовых систем питания межпланетных станций, которые направляются вглубь Солнечной системы. Пригодные для использования в массовой электронике портативные прототипы атомных бета-гальванических батарей безуспешно пытаются создать в США, России и не только. Они безопасны, но достаточной для работы тех же смартфонов мощности ещё никто из разработчиков не выжал. Китайская Betavolt тоже этого не сделала и обещает революцию завтра, а не сегодня. Хотелось бы в это верить.

Комментарии

  • Форма поиска
  • Новости — Российские ученые создали атомную батарейку с зарядом на 20 лет
  • Мини-атомная электростанция
  • Ядерная батарейка: в России создали источник питания, работающий 50 лет — DRIVE2
  • Другие новости
  • Российские ученые сделали уникальную атомную батарейку - Hi-Tech

Неоружейный плутоний: российские ученые создали уникальную ядерную батарейку

В этой системе увеличен токовый сигнал, поскольку регенерация вторичных электронов происходит внутри наноструктурированных плёнок никеля. В процессе окисления этих плёнок на металлическом ядре образуется оксидная оболочка, что увеличивает эффективность источника питания. Кроме того, никель-63 испускает мягкое бета-излучение, поэтому для него легко создать физическую защиту. Это делает применение никеля-63 достаточно доступным.

Особая пористая структура обеспечивает увеличение эффективной площади преобразования бета-излучения в 14 раз, что в результате дает общее увеличение тока. В итоге при уменьшении размера самой батареи в три раза ее удалось сделать в 10 раз более мощной при том же сроке годности, как и ее предыдущие менее мощные аналоги — до 20 лет. Однако специалисты уже смотрят в будущее, чтобы увеличить еще больше удельную мощность батареи и заставить ее работать до 50 лет и больше. При имеющейся конструкции в качестве действующего вещества вместо никеля-63 для этого можно было бы использовать более мощный полоний — источник альфа-излучения и посмотреть, что получится.

Источник изображения: Betavolt Компания Betavolt утверждает, что созданный ею 3-вольтовый прототип атомной батарейки меньше монеты будет работать 50 лет. Батарея якобы уже передана клиентам для изучения, а по-настоящему мощный 1-Вт элемент будет представлен в 2025 году. Сообщается, что аккумулятор будет полностью безопасным, так как на него не будут влиять температура воздуха и другие факторы. Также отмечается, что проблем с утилизацией быть не должно — к концу эксплуатации почти все радиоактивные элементы попросту распадутся. Эта разработка, как и множество других подобных в США, России и в других странах, использует источник изотопов, который выделяет энергию при радиоактивном бета-распаде. У таких батарей низкий КПД на уровне единиц процентов, но работать они могут десятилетиями, поэтому, например, нашли применение в качестве бортовых систем питания межпланетных станций, которые направляются вглубь Солнечной системы.

Расчеты, проведенные учеными, позволяют утверждать, что такой источник способен проработать не менее 20 лет без необходимости замены. Фото topwar. Российские исследователи предложили нанести радиоактивный элемент по обе стороны планарного p-n перехода. Это позволило сделать технологию изготовления элемента более простой. При этом появилась возможность контроля обратного тока, существенно влияющего на общую мощность батареи.

Конкуренты тоже есть

  • Альтернативная энергетика
  • Почему ядерные батарейки так и не стали популярны? История почти забытой технологии
  • В МИФИ создали прототип плутониевой батарейки
  • «Это совершенно безопасно» — в Китае создали ядерную батарейку размером меньше монеты

Вечный заряд: российские ученые создают батарейку, способную работать десятилетиями

Американцы первые образцы своих атомных батареек устанавливали на спутники Transit 4A и 4B. 28 тысяч лет без подзарядки: как устроена батарейка на ядерном топливе и насколько она безопасна? О сервисе Прессе Авторские права Связаться с нами Авторам Рекламодателям Разработчикам. Атомную батарейку, которая эффективно сможет работать десятки лет, продлевая работоспособность космических и глубоководных приборов, создали ученые НИТУ «МИСиС».

если пропустили:

  • Оставайтесь на связи
  • Ученые НИЯУ МИФИ создали прототип ядерной батарейки
  • В России разработана атомная батарейка / ИА REX
  • Что за ядерную батарейку создали российские учёные? | Аргументы и Факты
  • Поделиться

Атомная батарейка. 80 лет без подзарядки

Заново изобрели электричество: батарейка с сердечником из ядерных отходов будет работать 28 тысяч лет. Устройство ядерной батарейки можно сравнить с полупроводниковой солнечной батареей. Атомная батарейка состоит всего из двух ключевых компонентов: источника бета-излучения и полупроводникового преобразователя. Физики оптимизировали толщину слоев ядерной батарейки, использующей для производства электрической энергии бета-распад изотопа никеля-63. В России представили прототипы уникальных ядерных батареек, срок службы которых составляет более пятидесяти лет.

В России создали атомную батарейку со сроком службы до 20 лет

В России создали прототип атомной батареи, которая может работать без подзарядки 80 лет. Атомная батарейка, также известная как радиоизотопный генератор тепла (РИГТ), является источником энергии, который использует процесс распада радиоактивных изотопов для. Первую опытную партию ядерных батареек для космоса и авиации изготовил «Росатом». Новости / Батарейки и аккумуляторы. Российские ученые создали атомную батарейку, которая способна работать до 20 лет.

Атомные батарейки и зарядка по Wi-Fi: будущее рынка сохранения энергии

В батарейке МИФИ несколько иной принцип действия — изотоп в вакуумной камере нагревается до 1500 градусов Цельсия и начинает светиться. Конструкция ядерной батареи BV100. Ядерный аккумулятор BV100 очень маленький — его габариты составляют 15x15x5 миллиметров. О сервисе Прессе Авторские права Связаться с нами Авторам Рекламодателям Разработчикам. Китайский стартап Betavolt разработал атомную батарейку, которая может вырабатывать энергию в течение 50 лет без необходимости зарядки.

Похожие новости:

Оцените статью
Добавить комментарий