Коэффициент Джини – статистический показатель, который используется для характеристики уровня экономического неравенства в стране. Коэффициент Джини (Gini coefficient) – количественный показатель, отражающий степень неравенства различных вариантов распределения доходов, разработанный итальянским экономистом, статистиком и демографом Коррадо Джини. Коэффициент Джини открывает глаза и показывает социально-финансовые диспропорции внутри страны и по миру. А для этого нужно точно знать, как рассчитать коэффициент Джини и как использовать кривую Лоренца для формирования этих статистических показателей.
Коэффициент Джини: формула неравенства
Коэффициент Джини показывает расстояние между распределениями целевых значений и тех, что показывает модель. Коэффициент итальянского экономиста, статиста и демографа Коррадо Джини (более известный как индекс Джини) позволяет более точно, количественно измерить степень неравномерности распределения доходов населения. Коэффициент итальянского экономиста, статиста и демографа Коррадо Джини (более известный как индекс Джини) позволяет более точно, количественно измерить степень неравномерности распределения доходов населения.
Gini Coefficient
Как указывает автор, коэффициент Джини лишь один из многих измерителей неравенства, и сказанное относительно коэффициента Джини в равной мере относится и к остальным, близким по содержанию показателям (например, к индексам Тейла, Аткинсона, Херфиналя-Хиршмана. В 2023 году в России коэффициент Джини, отражающий дифференциацию по доходам, составил 0,403 против 0,395 годом ранее, отчитался Росстат. Коэффициент Джини показывает расстояние между распределениями целевых значений и тех, что показывает модель. Коэффициент Джини, из которого проистекает индекс Джини, используемый для оценки равномерности распределения доходов в экономики, частично базируется на другом методе оценки неравенства в распределении доходов – кривой Лоуренса.
В России зафиксирован рост доходного неравенства
Чем больше коэффициент Джини, тем сильнее распределение отклоняется от прямой и тем выше уровень неравенства доходов в данной группе. Работа Бургиньона и Морриссона показывает устойчивый рост неравенства с 1820 года, когда глобальный коэффициент Джини составлял 0,500. Коэффициент Джини показывает, насколько «кривая Лоренца» отклоняется от «линии равенства», сравнивая площади A и B на картинке. Коэффициент Джини как функция таблиц смертности: расчет на основе дис-кретных данных, декомпозиция различий и эмпирические примеры. Коэффициент Джини равен площади под линией совершенного равенства (0,5 по определению) минус площадь под кривой Лоренца, деленной на площадь под линией совершенного равенства.
Коэффициент Джини
Ещё один немаловажный момент. Давайте мысленно закрепим концы кривой в точках и и начнем изменять её форму. Вполне очевидно, что площадь фигуры не изменится, но тем самым мы переводим членов общества из «среднего класса» в бедные или богатые при этом не меняя соотношения доходов между классами. Возьмем для примера десять человек со следующим доходом: Теперь к человеку с доходом »20» применим метод Шарикова «Отобрать и поделить! В этом случае коэффициент Джини не изменится и останется равным 0,772, мы просто притянули «закрепленную» кривую Лоренца к оси абсцисс и изменили её форму: Давайте остановимся на ещё одном важном моменте: рассчитывая коэффициент Джини, мы никак не классифицируем людей на бедных и богатых, он никак не зависит от того, кого мы сочтем нищим или олигархом. Но предположим, что перед нами встала такая задача, для этого в зависимости от того, что мы хотим получить, какие у нас цели, нам необходимо будет задать порог дохода четко разделяющий людей на бедных и богатых.
Если вы увидели в этом аналогию с Threshold из задач бинарной классификации, то нам пора переходить к машинному обучению. Машинное обучение 1. Общее понимание Сразу стоит заметить, что, придя в машинное обучение, коэффициент Джини сильно изменился: он рассчитывается по-другому и имеет другой смысл. Численно коэффициент равен площади фигуры, образованной линией абсолютного равенства и кривой Лоренца. Остались и общие черты с родственником из экономики, например, нам всё также необходимо построить кривую Лоренца и посчитать площади фигур.
И что самое главное — не изменился алгоритм построения кривой. Кривая Лоренца тоже претерпела изменения, она получила название Lift Curve и является зеркальным отображением кривой Лоренца относительно линии абсолютного равенства за счет того, что ранжирование вероятностей происходит не по возрастанию, а по убыванию.
Запишем формулу Вилкоксона в вероятностном виде и преобразуем её: Аналогичную формулу можем выписать для площади под Lift Curve помним, что она состоит из суммы двух площадей, одна из которых всегда равна 0. Практическое применение Как упоминалось в начале статьи, коэффициент Джини применяется для оценки моделей во многих сферах, в том числе в задачах банковского кредитования, страхования и целевом маркетинге. И этому есть вполне разумное объяснение. Эта статья не ставит перед собой целью подробно остановиться на практическом применении статистики в той или иной области. На эту тему написаны многие книги, мы лишь кратко пробежимся по этой теме. Кредитный скоринг По всему миру банки ежедневно получают тысячи заявок на выдачу кредита. Разумеется, необходимо как-то оценивать риски того, что клиент может просто-напросто не вернуть кредит, поэтому разрабатываются предиктивные модели, оценивающие по признаковому пространству вероятность того, что клиент не выплатит кредит, и эти модели в первую очередь надо как-то оценивать и, если модель удачная, то выбирать оптимальный порог threshold вероятности. Выбор оптимального порога определяется политикой банка.
Задача анализа при подборе порога — минимизировать риск упущенной выгоды, связанной с отказом в выдаче кредита. Но чтобы выбирать порог, надо иметь качественную модель. Основные метрики качества в банковской сфере: Страхование В этой области всё аналогично банковской сфере, с той лишь разницей, что нам необходимо разделить клиентов на тех, кто подаст страховое требование и на тех, кто этого не сделает. Рассмотрим практический пример из этой области, в котором будет хорошо видна одна особенность Lift Curve — при сильно несбалансированных классах в целевой переменной кривая почти идеально совпадает с ROC-кривой. Это было очень странное и в то же время невероятно познавательное соревнование. И с рекордным количеством участников — 5169. Porto Seguro — бразильская компания, специализирующаяся в области автострахования. Датасет состоял из 595207 строк в трейне, 892816 строк в тесте и 53 анонимизированных признаков. Напишем простенький бейзлайн, благо это делается в пару строк, и построим графики. Коэффициент Джини победившей модели — 0.
Это одна из причин, почему все модели, в том числе и победившие, по сути получились мусорные. Наверное, просто пиар, раньше никто в мире не знал про Porto Seguro кроме бразильцев, теперь знают многие. Целевой маркетинг В этой области можно лучше всего понять истинный смысл коэффициента Джини и Lift Curve. Почти во всех книгах и статьях почему-то приводятся примеры с почтовыми маркетинговыми кампаниями, что на мой взгляд является анахронизмом. Создадим искусственную бизнес-задачу из сферы free2play игр. У нас есть база данных пользователей когда-то игравших в нашу игру и по каким-то причинам отвалившихся. Мы хотим их вернуть в наш игровой проект, для каждого пользователя у нас есть некое признаковое пространство время в проекте, сколько он потратил, до какого уровня дошел и т. Оцениваем модель коэффициентом Джини и строим Lift Curve: Предположим, что в рамках маркетинговой кампании мы тем или иным способом устанавливаем контакт с пользователем email, соцсети , цена контакта с одним пользователем — 2 рубля. Мы знаем, что Lifetime Value составляет 5 рублей. Необходимо оптимизировать эффективность маркетинговой кампании.
Предположим, что всего в выборке 100 пользователей, из которых 30 вернется. Это провал кампании. Рассмотрим график Lift Curve. Мы в плюсе. Таким образом, Lift Curve позволяет нам наилучшим образом оптимизировать нашу маркетинговую компанию.
There are a number of other ways in which comparability across surveys can be limited. In collating this survey data the World Bank takes a range of steps to harmonize it where possible, but comparability issues remain. The PIP Methodology Handbook provides a good summary of the comparability and data quality issues affecting this data and how it tries to address them. The surveys underlying the data within a given spell for a particular country are considered by World Bank researchers to be more comparable. The breaks between these comparable spells are shown in the chart below for the share of population living in extreme poverty.
You can select to see these breaks for any indicator in our Data Explorer of the World Bank data.
Так, чем на большее количество групп поделена одна и та же совокупность больше квантилей , тем выше для неё значение коэффициента Джини. Коэффициент Джини не учитывает источник дохода, то есть для определённой географической единицы страны, региона и т. Метод кривой Лоренца и коэффициента Джини в деле исследования неравномерности распределения доходов среди населения имеет дело только с денежными доходами, меж тем некоторым работникам заработную плату выдают в виде продуктов питания и т. Различия в методах сбора статистических данных для вычисления коэффициента Джини приводят к затруднениям или даже невозможности в сопоставлении полученных коэффициентов.
Коэффициент Джини отчасти неадекватен для плановых экономик, где распределение ресурсов зависит не только от доходов, но и от лояльности к государству партии. Кроме того, так как частное предпринимательство запрещено в плановой экономике , выходит ситуация когда получаемые доходы фиксируются не у предпринимателей, а у государства.
Коэффициент Джини: все ли равны?
Неравенство в доходах: о чем говорят кривая Лоренца и коэффициент Джини | Коэффициент Джини (индекс концентрации доходов). |
Коэффициент Джини. Большая российская энциклопедия | Работа Бургиньона и Морриссона показывает устойчивый рост неравенства с 1820 года, когда глобальный коэффициент Джини составлял 0,500. |
Коэффициент Джини | В данной статье приведены показатели коэффициента и индекса Джини — показателя, характеризующего дифференциацию населения России по доходам. |
Экономика. 10 класс
При этом макроэкономическая стабилизация возможна только при условии, что рост зарплат будет сопровождаться положительной динамикой производительности труда и цифровизацией, уточнила она. В противном случае избыток денежной массы может спровоцировать дальнейший рост инфляции. Среди ключевых причин такого низкого уровня безработицы он выделил демографическую яму 1990-х, рост количества самозанятых, увеличение количества граждан, имеющих неполную занятость. Не стоит сбрасывать со счетов и последствия пандемии, проведение специальной военной операции», — добавил он. Читайте также:В Госдуме предложили разрешить выплату зарплат при блокировке счета Не ждет снижения напряженности на рынке труда и экономист, автор Telegram-канала «Твердые цифры» Родион Латыпов. Эксперт также отметил, что источником новых работников может стать не только снижение числа безработных, но и увеличение рабочей силы из числа тех, кто раньше ее частью не являлся это не только студенты и пенсионеры.
Рост зарплат, по его мнению, сделает для них выход на рынок труда относительно более привлекательным. Если говорить о доходах в разбивке по группам населения, важно помнить, что в них включаются не только зарплаты, но и, например, доходы от собственности, подчеркнул Латыпов.
Такая неравномерность возникает в распределении доходов по группам населения, трудовых ресурсов по регионам страны, активов по кредитным организациям и т. Расчёт коэффициента Джини базируется на использовании кривой концентрации кривая Лоренца. Для её построения необходимо иметь частотное распределение единиц исследуемой совокупности и взаимосвязанное с ним частотное распределение изучаемого признака. Так, например, в практике статистики при изучении дифференциации населения по доходам выделяют пять групп по степени их увеличения: первая — с наименьшими доходами, пятая — с наибольшими.
При равномерном распределении классов целевой переменной коэффициент Джини идеального алгоритма всегда будет равен 0. Нормализованный коэффициент Джини является метрикой качества, которую необходимо максимизировать. Алгебраическое представление. Мы подошли к самому, пожалуй, интересному моменту — алгебраическому представлению коэффициента Джини. Как рассчитать эту метрику? Она не равна своему родственнику из экономики. Известно, что коэффициент можно вычислить по следующей формуле: Я честно пытался найти вывод этой формулы в интернете, но не нашел ничего. Даже в зарубежных книгах и научных статьях. Зато на некоторых сомнительных сайтах любителей статистики встречалась фраза: «Это настолько очевидно, что даже нечего обсуждать. Чуть позже, когда сам вывел формулу связи этих двух метрик, понял что эта фраза — отличный индикатор. Если вы её слышите или читаете, то очевидно только то, что автор фразы не имеет никакого понимания коэффициента Джини. У меня получилось сделать это двумя способами — параметрически интегралами и непараметрически через статистику Вилкоксона-Манна-Уитни. Второй способ значительно проще и без многоэтажных дробей с двойными интегралами, поэтому детально остановимся именно на нем.
В целом коэффициент Джини является более универсальным показателем неравенства в доходах, чем фондовый и децильный коэффициенты. Он полностью учитывает разброс значений признака вариационного ряда, в то время как фондовый и децильный коэффициенты учитывают разрыв, складывающийся между крайними децильными группами[3]. Таким образом, коэффициент Джини может быть использован как дополнительный показатель к коэффициенту фондов в оценке состояния экономической безопасности по уровню неравенства населения по доходам. Список источников и литературы: 1. Указ Президента РФ от 13. Указ Президента РФ от 7 мая 2018 г. N 204 "О национальных целях и стратегических задачах развития Российской Федерации на период до 2024 года" 3. Суворов А. Cowell F. Handbook of Income Distribution. Litchfield J. Trapeznikova I. Pp 1 -12 7. Выходные данные статьи: Петров Ф.
Индекс Джини
Индекс Джини в странах мира | Коэффициент Джини определяется как отношение площади фигуры, расположенной под кривой Лоренца, к площади треугольника ODC. |
Что такое коэффициент Джини? Душкин объяснит - YouTube | В современной России реальные показатели децильного коэффициента и коэффициента Джини установить практически невозможно. |
Коэффициент Джини
Первым шагом является получение результата двух моделей в предикации. Построенные нами модели показывают группу риска и сумму требования всех полисов в них в предикации. В итоге мы создали три столбца: первый — рейтинг риска от 1 до 10, второй — сумма денег, которую претендовала группа полисов в одной модели, и второй столбец — то же самое, но результат второго модель. Итак, кадр данных выглядит так: Следующий код генерирует область, которая будет отображаться на кривой Лоренца для каждого результата модели. Теперь в DataFrame добавлены столбцы.
Выводы: С точки зрения примера, индекс Джини показывает, что модель A лучше с точки зрения результатов, чем модель B. Вы также можете видеть на кривой Лоренца, что модель A предсказывает более высокую группу риска, больше денег, чем модель B.
Такое распределение отображается прямой, проходящей из нижнего левого угла графика к верхнему правому углу и являющейся линией равномерного распределения. Чем сильнее концентрация изучаемого признака, тем заметнее кривая Лоренца отклоняется вниз от линии равномерного распределения, и наоборот, чем слабее концентрация, тем ближе будет кривая к прямой. Степень концентрации определяется площадью фигуры А, ограниченной линией равномерного распределения и кривой Лоренца. Чем больше площадь А и чем соответственно меньше площадь В, тем степень концентрации выше.
Полученная кривая и будет характеризовать степень концентрации. Такое распределение отображается прямой, проходящей из нижнего левого угла графика к верхнему правому углу и являющейся линией равномерного распределения. Чем сильнее концентрация изучаемого признака, тем заметнее кривая Лоренца отклоняется вниз от линии равномерного распределения, и наоборот, чем слабее концентрация, тем ближе будет кривая к прямой. Степень концентрации определяется площадью фигуры А, ограниченной линией равномерного распределения и кривой Лоренца.
Разберем всё это на очередном игрушечном примере. Для минимизации ошибки при расчете площадей фигур будем использовать функции scipy interp1d интерполяция одномерной функции и quad вычисление определенного интеграла. Идея следующая: вместо ранжирования населения по уровню дохода, мы ранжируем предсказанные вероятности модели по убыванию и подставляем в формулу кумулятивную долю истинных значений целевой переменной, соответствующих предсказанным вероятностям. Иными словами, сортируем таблицу по строке «Predict» и считаем кумулятивную долю классов вместо кумулятивной доли доходов. Код на Python from scipy. Мало это или много? Насколько точен алгоритм? Без знания точного значения коэффициента для идеального алгоритма мы не можем сказать о нашей модели ничего. Поэтому метрикой качества в машинном обучении является нормализованный коэффициент Джини, который равен отношению коэффициента обученной модели к коэффициенту идеальной модели. Далее под термином «Коэффициент Джини» будем иметь ввиду именно это. Глядя на эти два графика мы можем сделать следующие выводы: Предсказание идеального алгоритма является максимальным коэффициентом Джини для текущего набора данных и зависит только от истинного распределения классов в задаче. Площадь фигуры для идеального алгоритма равна: Предсказания обученных моделей не могут быть больше значения коэффициента идеального алгоритма. При равномерном распределении классов целевой переменной коэффициент Джини идеального алгоритма всегда будет равен 0.
Какие страны и почему отличаются высоким показателем джини география реферат
В России вырос уровень доходного неравенства | В России, Китае и США коэффициент Джини средний и примерно равен 0,4. В Бразилии и ЮАР самый высокий — 0,6. В Японии, Швеции и Словении низкий — 0,25. |
Маленький статистический ликбез - коэффициент неравенства доходов Джини | Пикабу | Рассчитав коэффициент Джини для отраслей экономики в 2013 году и сравнив эти значения с показателями 2015 года, мы увидим, как повлиял кризис на дифференциацию заработных плат в той или иной сфере. |
Неравенство в доходах: о чем говорят кривая Лоренца и коэффициент Джини | В 2023 году Росстат зафиксировал увеличение коэффициента Джини, отражающего уровень концентрации доходов в стране, до 0,403, в сравнении с предыдущим годом, когда он составлял 0,395. |
Как рассчитать коэффициент Джини в Excel (с примером) | Чем больше коэффициент Джини, тем сильнее распределение отклоняется от прямой и тем выше уровень неравенства доходов в данной группе. |
Коэффициент Джини (распределение дохода)
Поэтому используют различные способы кодирования переменных. В данной задаче применили WOE-преобразование. Такой подход позволяет придать значимость признаку в формате числа WOE-вес и включить его в набор факторов для обучения модели прогнозирования. Важно, чтобы значения показателей были ранжированы, где А — лучшее значение, B — хорошее значение, С — удовлетворительное значение и т. WOE-веса рассчитываются как натуральный логарифм от отношения доли хороших наблюдений к доле плохих отношений. Для прогнозирования использую логистическую модель.
Однако, в ходе анализа модели было предложено рассмотреть возможность добавления нового фактора — F18. Данный показатель является качественным, поэтому требует преобразования с помощью woe функции. Переобучили модель с учетом нового набора предикторов и посчитали Джини. По результатам видно, что на обучающей выборке качество модели лучше с дополнительным фактором, а на тестовой — без него. Так как решение принимается исходя из большего значения по Gini test, то дополнительный фактор не будет добавлен в модель. Выбор в пользу модели без нового фактора достаточно противоречив, поэтому рассчитаем дополнительную метрику — среднюю абсолютную ошибку.
Он позволяет сравнивать уровень неравенства между разными странами, регионами и временными периодами, что облегчает анализ динамики и международных различий. Широкое применение. Используется в различных областях, включая экономику , социологию, исследования бедности и общественные науки.
Устойчивость к масштабу. Коэффициент Джини устойчив к изменениям масштаба, что делает его применимым при сравнении обществ и групп людей различного размера. Помимо преимуществ у этого коэффициента выделяют и ряд недостатков: Ограниченность в оценке социальной защищенности. Коэффициент Джини сконцентрирован на распределении доходов, что делает его менее чувствительным к составляющим социальной защищенности, таким как доступ к образованию и здравоохранению. Интерпретационные ограничения. Трудно однозначно интерпретировать, насколько конкретное значение коэффициента Джини является социально справедливым или несправедливым. Неучет разных источников дохода. Не учитывает различные источники дохода, такие как натуральные выплаты, премии в виде активов, что вносит искажения в оценку неравенства. Чувствительность к выбору категорий.
Результаты коэффициента Джини зависят от выбора категорий, на которые разбивается население для анализа, что создает потенциальные искажения. Ограничения в оценке социальной справедливости. Индекс Джини не является индикатором справедливости распределения богатства. Равномерное распределение не всегда означает справедливость, особенно в условиях рыночной экономики. Влияние нерыночных экономик. Могут возникнуть искажения в оценке неравенства в странах с нерыночной экономикой, где государство играет ключевую роль в распределении ресурсов. В заключение подчеркнем, коэффициент Джини является показательным инструментом для анализа неравенства, но для полного понимания социально-экономической динамики рекомендуется использовать его в сочетании с другими показателями.
Существует два основных способа расчёта коэффициента Джини. Оба приводят к одним и тем же значениям, но дают нам два представления о том, что именно измеряет коэффициент Метод 1: Расчёт разницы между доходами двух человек по отношению к среднему значению Первый метод можно проиллюстрировать следующим мысленным экспериментом Представьте двух людей, случайно столкнувшихся на улице. Они сравнивают свои доходы и выясняют, насколько один из них богаче другого. Насколько большую разницу можно ожидать? Этот ожидаемый разрыв между двумя случайно выбранными людьми и измеряется коэффициентом Джини. Он рассчитывается как среднее значение разрыва между всеми парами людей в населении Если доходы распределены равномерно, то можно ожидать небольшой разрыв между доходами двух случайно выбранных людей. Там, где высокий уровень неравенства, мы можем ожидать большой разрыв Однако, если измерять этот показатель в абсолютном выражении, он также будет зависеть от богатства населения в целом. Если даже самые обеспеченные представители населения имеют низкий доход, то абсолютный разрыв между доходами людей будет маленьким. Для простоты представим, что всё население состоит из тех двух человек, встретившихся на улице.